	[bookmark: _Hlk479176962]File name
	YouTestMe Web Development Manual

	Author
	Malloc Inc

	Confidentiality
	Internal

	Last save date
	Monday, June-28-2021 at 8:57:00 AM

Table of Contents
1	Introduction	4
2	Open Issues	4
3	Mandatory Development Procedure	4
4	Setting up Classroom2020	5
4.1	Create DB schema	5
4.1.1	Editing wrapper script	6
4.1.2	Troubleshoot – editing other files	6
4.1.3	Running script from command prompt	7
4.2	Load data via Batch Project	7
4.3	Load data from template databases	7
4.4	Setting up www_source project	7
4.5	Using SVN Branches to do Developemnt	8
4.5.1	Download Apache Tomcat 7.0	9
4.6	Import projects into Eclipse	10
4.6.1	Adding Tomcat server	10
4.6.2	Troubleshoot: Can’t find server tab	15
4.6.3	Setting up server Context	17
4.6.4	Running a project	18
4.6.5	Flying through application	18
4.7	Setting up Sass preprocessor	22
4.7.1	How to install Sass and Compass	22
4.7.2	Setting environment	22
4.7.3	Compass configuration file	24
4.8	Sass project creation	25
4.8.1	Variables	26
4.8.2	Nesting	27
4.8.3	Compass watch	27
4.8.4	Practice Sass	27
4.9	GDAO Project	28
4.10	Build and Deployment Procedures	28
4.11	Unix machines in Montreal Cloud	28
5	Tagging the Code	29
5.1	Naming convention	29
5.2	Tags location	30
5.3	Code Compatibility	31
5.4	Questions and Answers	31
6	Bug Tracking	32
6.1	Google Drive	32
7	Coding using JSF, Primefaces, GDAO and SQL	33
7.1	General Java rules	33
7.1.1	Formatter	33
7.1.2	Declaring variables, constructors and methods	33
7.1.3	Naming	34
7.1.4	Comments	34
7.1.5	Method principles	34
7.1.6	If/While/For brackets	34
7.1.7	Alignment	34
7.1.8	Spacing	36
7.1.9	Constructor declaration	36
7.2	General SQL rules	37
7.2.1	View Naming	37
7.2.2	View creation	38
7.2.3	View SQL Formatting	39
7.3	YouTube Videos for Web Developers	39
8	Layers (db, model, webview)	40
8.1	Architecture diagram	40
8.2	DB – layer (standardized in Dental, from DB-Analyzer tag 6.2)	41
8.2.1	Custom Data classes – basic rules	41
8.2.2	Language properties	42
8.2.3	Sample data classes	42
8.3	Model layer (standardized in dental)	44
8.3.1	Custom Provider classes	44
8.3.2	Base Provider	45
8.3.3	Custom Entity classes	47
8.3.4	Entity Report Classes	49
8.4	Webview (Ready to use)	52
8.4.1	(Important) Referencing and naming between xhtml and controller	52
8.4.2	Controllers and xhtml rules	53
8.4.3	Outer controller code	53
8.4.4	Inner controller code	54
8.4.5	Outer controller webpage	54
8.4.6	Inner controller webpage (standalone webpage for single program)	55
8.4.7	Facet example	56
8.4.8	GDAO Statement	56
8.4.9	Lazy example	58
8.4.10	Lazy Example – upgraded	58
8.4.11	Select entity lazy	58
8.4.12	Select entity lazy (GDAO statement)	61
8.5	Reusable search components	62
9	System (application level) parameters management	66
9.1	How to use SystemParametersManager	66
9.1.1	Getting the instance	66
9.1.2	Getting value of system paramter	66
9.1.3	Changing value of system paramter	66
9.1.4	Good practices	66
9.1.5	Important rules	67
10	Session level parameters	67
10.1	Getting ApplicationUser object for currently logged in user	67
11	Useful YouTestMe Tutorials	67
12	Logging in Java	69

[bookmark: _Toc75763081]Introduction
This document describes how to set up different YouTestMe projects step by step.

Also about learning Sass. First things first Sass saves you a bunch of time you don’t have to type same code again and again… You are able to reuse properties you have already set. But you’ll read more about it later on, next Sass is visually much better than Css.

[bookmark: _Toc75763082]Open Issues

	#
	Issue
	Comment

	1.
	Which version of Eclipse should be used?
Please provide download link to proper version.
	Verified with the latest version of Eclipse:
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/2019-06/R/eclipse-inst-win64.exe
See tutorial about setting environment in Eclipse (Section 9.)

[bookmark: _Toc75763083]Mandatory Development Procedure

\youtestmedoc\Procedures\Development Procedures\YTM Development Procedure.docx

[bookmark: _Toc75763084]Setting up Classroom2020	Comment by Adis Dijab: This has to be adapted for GetCertified and Postgres database
After checking out repository, there are three steps that are required in order to set up project:
1. Create DB schema
2. Load data via Batch Loader
3. Set up www_source project
[bookmark: _Toc75763085]Create DB schema
Database script that creates Classroom2020 schema can be found on this location:

youtestme\trunk\db\dbmodel\scripts\create_database_wrapper_script

[bookmark: _Toc75763086]Editing wrapper script
Before you run script, make sure that you set up the following things:

[image:]

Script has to be edited with personal information:

1. If you are creating DB schema for your local database, it is required to create DB user. For creating a user in SQLPlus, see:
https://www.youtube.com/watch?v=drpZujwefuA&list=PLNr69myqMnd-oRCI2u8J4AM2jTWhLRafH&index=1 starting from 2:10
2. Set DATABASE_LOCATION to be either local or ytm(line 11)
3. Then put you new DB_USER and DB_PASSWORD. If DATABASE_LOCATION = local, make sure that you create a user in SQLPlus for your local database and put credentials here.
(line 12, line 13)
4. If DATABASE_LOCATION = local, then put credentials for system user as well as oracle instance location on line 31, 32, 33. if DATABASE_LOCATION = ytm then put credentials on line 23,24,25
5. Save this file, make note that you should NOT commit it in SVN repository.
[bookmark: _Toc75763087]Troubleshoot – editing other files
Script will create all tables and views before putting “Success” message (note that it will put “Success” message regardless of success so make sure that you follow script and read what goes on), however there are some issues that you might encounter while loading so it is recommended to check the following before running script:
1. For someWindows users, there might be a problem with VARCHAR2 larger than 2000 letters. Since Classroom2020 has some fields with 30 000 letters, you have to edit the main youtestme.sqlfile. It can be found on:
youtestme\trunk\db\dbmodel\scripts\sql\youtestme.sql
Just search for “30000” and replace given fields with “2000”
2. Error with ytm_role, if you are creating local db schema - you will see this error. In order to avoid it, you have to go to:
youtestme\trunk\db\dbmodel\scripts\sql\create_db_user.sql
and remove where says: “grant ytm_role to &newuser; ” (line 20)
[bookmark: _Toc75763088]Running script from command prompt
After above steps, if you are using Windows - run it from Command Prompt.In order to run it from command prompt do the following:
1. Open command prompt
2. If SVN repository is not on C: (or wherever Windows is installed), then just go to that folder, for example:
cd C:\SVN\youtestme\trunk\db\dbmodel\scripts
Then from there, write create_database_wrapper_script.bat
3. If SVN repository is on different drive than Windows, then redirect it before using command from above. For example is SVN is on E:\ drive, and Windows is on C:\ - type E: and press enter. Then you can use commands from step 2.

After setting up DB schema via script, you should see tables and views in your database. To do so, you may use SQL Developer.
[bookmark: _Toc75763089]Load data via Batch Project

Tutorial for this part can be found in:
youtestmedoc\trunk\Procedures\Development Procedures\YTM – Creating Test Data Procedure, chapter 8.1

[bookmark: _Toc75763090]Load data from template databases
Data is maintained in template databases

ytm-4-SE-DB-Dev IP: 192.99.24.208

Username and password for GC: ytm1, ytm1
Username and password for CL2020: ytm2, ytm2

Service name: pdytm1
Port: 1555

Check this document for explanation how to copy this data to your database:
\youtestmedoc\Procedures\Development Procedures\YTM Copy DB Data using DB Pump.docx

[bookmark: _Toc75763091]Setting up www_source project
Please note that development should not be done in “trunk”. See next paragraph for explanation.

If the development and/or documentation repositories have not been yet checked out from the SVN repository, check out entire content of the following:
/youtestme/trunk – contains all the necessary code within included “www_source” directory as well as some other relevant directories containing scripts, configuration etc…
/youtestmedoc/trunk – contains all the documentation

Now after data has been loaded to our database, the last thing to do is to set up the main project and run server from our PC. In order to do so, do the following:

[bookmark: _Toc75763092]Using SVN Branches to do Developemnt
Development should not be done in “trunk”. That branck is “integration” branch where we merge our code after testing is completed.
You should always create a branch for your project (usualy from “trunk”) and do development there.

Graphical representation of this process is shown below.

[image: https://flylib.com/books/4/81/1/html/2/images/0131855182/graphics/02fig01.gif]

[image: Image result for svn branching]

[bookmark: _Toc75763093]Download Apache Tomcat 7.0
Go to Tomcat download page and click on the highlighted link from below:	Comment by Adis Dijab: Outdated, use tomcat from res repository. This is explained in the video about setting Eclipse environment. See section 9.

[image:]

Note that you need WinRar in order to extract it. Extract folder and leave as it is, there is no further installation.

[bookmark: _Toc75763094]Import projects into Eclipse	Comment by Adis Dijab: Outdated, example is written for youtestme. We have to adapt this section for GetCertified. Everything from 4.6.1 – 4.6.4 is explained in the video about setting Eclipse environment. See section 9.
Set workspace to youtestme\trunk\www_source and import the following projects:
· ytm.db
· ytm.model
· ytm.webview

[bookmark: _Toc75763095]Adding Tomcat server
After validating projects and building workspace there should be an Error with description:
“Target runtime Apache Tomcat v7.0 is not defined.”

It is required to set apache server in order to remove this error. To do so, go to Servers tab and click on the link.

Note: you have to have Eclipse for Web development installed
[image:]

And you need to add tab for Servers:

[image:]

[image:]

Add "ytm.webview" to "Configured"

[image:]

After clicking, scroll up and there will be Apache folder, click on it and go to Tomcat v7.0 Server – then click next.
[image:]

In the next step, click browse and go to give path to your tomcat directory. After that, click finish.
[image:]

[bookmark: _Toc75763096]Troubleshoot: Can’t find server tab
If you cannot find server tab, go to Window/Show View/Other../Server/ and click Servers, there should appear servers tab.
[image:]

However, if there is no Server folder inside Show View, then you have to go to Help/Install new Software
When window opens, click on the dropdown menu and find Mars (or any other new Eclipse version) release.

[image:]

Click on the highlighted and click Next. Accept licence agreement, click Finish and let Eclipse install this module for you.

Restart Eclipse and find Servers inside Show View.

[bookmark: _Toc75763097]Setting up server Context
After successfully setting up tomcat, you will see new folder inside Project Explorer tree.

[image:]

Now you have to make connection between Tomcat server and Oracle database. To do so, go to Servers/context.xml, click on the source tab and paste this before enclosing </Context>tag :

<Resource name="jdbc/UCPPool" auth="Container"
 factory="oracle.ucp.jdbc.PoolDataSourceImpl" type="oracle.ucp.jdbc.PoolDataSource"
 description="UCP Connection Pool in Tomcat" connectionFactoryClassName="oracle.jdbc.pool.OracleDataSource"
 minPoolSize="2" maxPoolSize="50" inactiveConnectionTimeout="20" user="gc_api"
 password="2ytm1"
 url="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.8)(PORT=1555))(CONNECT_DATA=(SERVICE_NAME=pdytm1)))"
 connectionPoolName="UCPPool" validateConnectionOnBorrow="true"
 sqlForValidateConnection="select 1 from DUAL" />
Relevant fields:
· user, put database username here
· password, put database password here
· url, put the relevant database fields into given format – basically you will have to edit HOST, PORT and SERVICE_NAME parameters

Finally, save this file.

[bookmark: _Toc75763098]Running a project
To run the project, right click on ytm.webview folder, and click Run as/Run on Server. Another window will appear, click Finish. Tomcat will start up and it will take some time for it to run (usually around 30 seconds). Finally, this is the screen that appears when Tomcat is up and running:
[image:]

Note: You need to remove ytm.webview path inside server.xml
[image:]
It should be like this:
[image:]
From this point, your Project is up and ready for development.
[bookmark: _Toc75763099]Flying through application
Some useful shortcuts to start with:
Ctrl + R
Search for any file (see picture below)
[image:]

If you want to find specific element there are a lot of nesting with templates in our application and you can easily get lost.

Right click on element you want to find, click inspect element, and copy last part of id (see picture below)

[image:]

File search:
Search will open differently, if you are in .xhtml, .css or some similar file you will open it as in picture below or Ctrl + H
[image:]

If you are in .java, .xml or some similar file:
[image:]

Be aware that this search can take a while, and use it only when you can’t find something. (On good SSD computer it will last for less than a sec, but that same search can last up to 15 sec on regular one.)

[image:]
[bookmark: _Toc75763100]Setting up Sass preprocessor
[bookmark: _Toc75763101]How to install Sass and Compass
To install Sass first you need to install Ruby.
NOTE: When installing Ruby make sure to add variable to PATH, that can be done automatically by checking that option in installer.
After Ruby installed:
Open your cmd and type gem install compass, and gem install ruby_gntp.
This will automatically install everything you need including Sass.
[image:]
[bookmark: _Toc75763102]Setting environment
Compass environment is created and it is just necessary to go to our sass directory
www_source\ytm.webview\WebContent\styles and type: compass watch or start script for it compass_watch_dev.bat
[image:]

It is necessary to download editor for sass files and to set your project to refresh automatically when you change your sass file.

To install plugin go to Help > Eclipse Marketplace
[image:]

And search scss
[image:]

At this moment only LiClipseText 1.1.0 is editor for .scss files

You can also change colors and add some new to this editor.
[image:]

Make sure that you have enabled Refresh using native hooks or pooling in Window > Preferences > Workspace, only this will put new generated css by compass inside eclipse, otherwise you will need to manually refresh project or open .css file so that it can take the new code.
[image:]
[bookmark: _Toc75763103]Compass configuration file
Cache_path is important to be as short as it can, if cache_path is to long it won’t compile. NOTE: this is problem only on windows.

[image:]

Use compass_watch_dev.bat for development and watching if file is changed,
And compass_watch_production.bat when you are finished and you want to commit to SVN.
[image:]

[bookmark: _Toc75763104]Sass project creation
If you do not have eclipse, you can type this things in your Command Prompt and get started with all tutorials and with coding:
1. compass create ProjectNameGoesHere
2. cd ProjectNameGoesHere
3. compass watch

Once when you have created a project you can edit your files with “Sublime text” editor. When the project has been created and you opened the files with Sublime text you should watch following tutorial: https://youtu.be/wz3kElLbEHE

Follow all the steps and you will see why to use Sass instead of CSS. Things that you need to focus on are:
1. Variables
2. Nesting
3. Importing

Important thing is that you don’t have to worry about creating CSS file, because Sass file will be automatically converted into CSS. Also the important thing is not to change or write into CSS files!

Files should be named like “_variables.scss”, also any other file which is not styles.scss should be named with underscore first and then the actual name of a file (for example: _mixins.scss). That’s because these files get imported into styles.scss.
[bookmark: _Toc75763105]Variables
Variables enable you to store any custom value you want for either to specify color or to store font, literally everything. You should create a new .scss file to store all variables which you will import in the other .scss files. Next thing is to get known with the way of writing code, here is the example:

$black: #000000; -This is the way to store black color under a variable name “black”, you can use it in your styles.scss instead of copying color numbers. Everything you want to have a customized values or properties should be stored into Variables so you can use it over and over again.

First to make other variables to show you how it works.

$white: #FFFFFF;
$text-color-1: #212121;
$border-1: 1px solid #e0e0e0;

What I did here is that I assigned values to this variables and some properties which I can use in styles.scss.
Here is the code example in styles.scss:

@import “compass”;
@import “folderName/variables”; //this is the way how to import files into styles.scss

body{
 width: 100%;
 color: $text-color-1;
}
Instead to search for color number you can easily say text-color-1 and go on. More about variables on the links that I mentioned before.

[bookmark: _Toc75763106]Nesting
When writing HTML you've probably noticed that it has a clear nested and visual hierarchy. CSS, on the other hand, doesn't.

Sass will let you nest your CSS selectors in a way that follows the same visual hierarchy of your HTML. Be aware that overly nested rules will result in over-qualified CSS that could prove hard to maintain and is generally considered bad practice.

Nesting styles is simple enough. You just enclose a selector (or selectors) inside the curly braces of another selector. There is really no limit to the amount of levels deep that you can nest elements. You can write whatever element within any element you want to style. Here is the example of nesting:

.left-sidebar-links{
 a{
 display: block;
 color: $lightBlue;
 opacity: .7;
 &: hover{
 opacity: 1;
 }
 }
}

It allows you to modify parts that you want to change, but to maintain simplicity. It’s just the example, you can learn more on the links and tutorials.

[bookmark: _Toc75763107]Compass watch
You use compass watch to see where you have errors in your code and to fix them easily. When you enabled compass watch at the beginning it is automatically updating with every save and compass is displaying your errors (line number, and what type of error it is).

[bookmark: _Toc75763108]Practice Sass
For practicing it is good to first make a simple page in HTML and CSS. Containing just tr and td, 3 td contain textInput. You have to change input background-color, borders for the whole table, and to make just border-bottom. Table contain 2 columns, one for labels and the other for outputText. You should have 2 files, one is index.html and the other one is styles.css. You do not make a project in CMD for this. You can see table example here:
[image:]

You will also get a illustrator file, you can find it at location: (youtestmedoc\trunk\Dev Tutorials\Interns\Sass Practice.ai) to examine colors, input width, height, etc.

When you finish with .css, you will have to make a new Sass project and to convert .css into .sass manually and then to compare files and see the differences.

[bookmark: _Toc75763109]GDAO Project
Checkout this repository: https://svn.youtestme.com/dba/trunk
Look at this tutorial for guide: Z:\Development\Tutorials\DB Analyzer , and this one https://svn.youtestme.com/youtestmedoc1/trunk/Procedures/Development%20Procedures/Setting%20up%20DBA%20in%20Eclipse%20and%20generating%20code.docx.

[bookmark: _Toc75763110]Build and Deployment Procedures
\youtestmedoc\trunk\Procedures\Development Procedures\YTM Application Build Procedure.docx

[bookmark: _Toc75763111]Unix machines in Montreal Cloud
Login information:
-username: ytmadmin
-password: 1!@Malloc2

Switch on corresponding ytm user:
- su - ytm1 (or another ytm user)
-password: 2ytm1
[bookmark: _Toc75763112]Tagging the Code	Comment by Adis Dijab: This is unnecessary for interns. They can skip this, or read informatively. This probably outdated, you can refer to Tagging procedure.

SVN tags will be used to control version of the code for purposes such as:
· testing
· delivery to the client
· troubleshooting and support
[bookmark: _Toc75763113]Naming convention
Format:
[application_identifier]-[major_version].[minor_version].[bug_fixes][release identifier]

Examples:
GC-3.0.1r
CL-1.1.0s
BLI-1.0.0
RES-2.0.0
CLDB-3.0.1
GCDB-1.0.6s

	Element
	Description

	Application identifier
	Alphanumeric designator for application or module, for example:
GC - Get Certified
CL - Classroom 2020
RES - Resources
BLI - Batch Loader of initial data
CLDB - Classroom database
GCDB- Get certified database
Note: no "-" character is allowed in this designator

	Major version
	Integer indicating major release of the application

	Minor version
	Integer indicating that application has new or changed features

	Bug fixes
	Integer indicates that application has only bug fixes

	Release identifier
	Optional indicator showing if tag is ready us release, stabile, beta or none:
· "r" - released to the client or ready for release
· "b" - beta release, tested and stabile version suitable to be given to early adopters for a trial and experimenting
· "s" - stabile, tested version of the code, can be used for demos
· if no indicator is present than this tag is intermediary tag used for testing or marking the code for whatever practical reasons

Important - each tag should have in the SVN comments field:
1. List of new features or bugs fixed
2. Any other useful information to the QA are development team

[bookmark: _Toc75763114]Tags location
Tags can be organized in subdirectories. There is no limit in number and depth of directories.

This is proposal and opened for discussion.

	Application
	Tag location

	Classroom 2020 batch - SMATSA
	http://svn.mallocinc.com/youtestme/tags/SMATSA/

	Classroom 2020 - Mainstream
	http://svn.mallocinc.com/youtestme/tags/CL/

	Classroom 2020 - Database
	http://svn.mallocinc.com/youtestme/tags/DB/

	Classroom 2020 - Batch loader
	http://svn.mallocinc.com/youtestme/tags/BL/

	Get Certified - Mainstream
	http://svn.mallocinc.com/getcertified/tags/GC/

	Get Certified - Database
	http://svn.mallocinc.com/getcertified/tags/DB/

	Get Certified - Batch Loader
	http://svn.mallocinc.com/getcertified/tags/BL/

[bookmark: _Toc75763115]Code Compatibility
Bear in mind that YouTestMe system is build and delivered from several components (tags) - for example:
· application tag such as CL-3.0.1r
· "res" tag (tomcat and scripts)
· database model
· other utility programs and scripts such as Batch loader

We need to keep track of compatibility of the tags. In below example subsequent release of the YTM Classroom 2020 has only a bug fix in the database (everything) else is the same:

	System version
(no tag)
	Application
(tag)
	Resources
(tag)
	Database
(tag)
	Utility
(tag)

	YTMCL-1.0.1r
	CL-3.0.1r
	RES-1.0.0r
	CLDB-1.0.6s
	BLI- 1.0.0r

	YTMCL-1.0.2r
	CL-3.0.1r
	RES-1.0.0r
	CLDB-1.0.7s
	BLI- 1.0.0r

[bookmark: _Toc75763116]Questions and Answers
Question: What is System version and why it does not have a tag?
Answer: That is the version of the YouTestMe software. It consists of components like: web application, database, scripts, libraries, software (Tomcat). Each of the components has its own version and table above ensures that we use compatible versions in software release. For example, database model has to be tagged since anybody can change anything in the model at any time and not knowing that with that change makes web application currently under testing incompatible or useless.

Question: Why database has its own tag?
Answer: If we tag entire trunk we are assuming that somehow database model is kept in sync with our code automatically, meaning that we are absolutely aware about all changes to the database model and 100% confident about their impact to application. That is very risky in small teams and impossible in larger teams.
Alternative solution is to do all development in the branch(es) where development of certain releases are clearly separated.

Note:
· each project has table line one shown above in corresponding project directory, for example:
\youtestmedoc\Projects\YTM Classroom 2020\YTM CL2020 - Compatibility List.xlsx
· Last three columns may be pretty much static in stabile environment
· Above table should be sufficient to anybody to recreate entire YTM system to exact state how it was delivered to the client
· tags can be created for subset of directories in repository, for example:

[image:]

[bookmark: _Toc75763117]Bug Tracking

[bookmark: _Toc75763118]Google Drive

https://docs.google.com/spreadsheets/d/1h5PWaXsRqT49AqI-h5Pb3KeRqMu2PvS2e-fY9Fw8UE8/edit?pref=2&pli=1#gid=1762665861

[bookmark: _Toc75763119]Coding using JSF, Primefaces, GDAO and SQL

[bookmark: _Toc75763120]General Java rules
These rules from below will be used to standardize code and make it cleaner and easier to read. Please note that our current codebase does not follow all of these concepts, so whenever you see a possibility to use these concepts, make sure to use them. Each daily small change to our code is good and will eventually make our code much more readable and easier to work with.

In addition to this, take your time to read Clean Code by Bob Martin, it is very helpful book. Ask for the access on the shared drive within YouTestMe local network, it is located there on this path:
Z:\Development\Tutorials\Helpful Java books
, there are also other books there that will be very benefitial to your further career as Java developer so feel free to use them.
[bookmark: _Toc75763121]Formatter
· Use formatter to format each class. Formatter is located here: http://svn.mallocinc.com/youtestme/trunk/cfg/Eclipse/ytm_eclipse_java_code_formatting.xml
· If you find some code that is badly formatted using formatter, send a bug to older developers so they can make a revision and eventual changes to formatter

[bookmark: _Toc75763122]Declaring variables, constructors and methods
· When creating class, excluding the import part that are at the very beginning, this should be the order of class components:

· Final global variables/Enums
· Public global variables
· Private global variables

· Constructor(s)

· Public method
· Private Method that is called by public method from above (If necessary)
· Public method

· On the bottom of the class, put getters and setters of global variables (If necessary)

[bookmark: _Toc75763123]Naming
· Use lower camel case naming when creating a method or an instance of particular object and upper camel case when creating a class or interface
· Classes and class instances should contain a noun within their name
· Methods should contain a verb within their name
· Evade buzz words, when creating code always try to create code that could be easily read by other developers
[bookmark: _Toc75763124]Comments
· Use comments when really necessary, otherwise try to evade it. Meaningful naming and design should speak for itself instead of comments. Generally, comments are hard to maintain and if there is no other option make sure that comments are always up to date.
· In general, comments should give you information why does this code exist, not what it does – this should be explained by the code itself.
· To write a comment, type /* and enter
[bookmark: _Toc75763125]Method principles
· Method name should include a meaning verb that explains what that particular method does
· Avoid having big methods, rather create a method that would be max size of ~20 lines. If method has a lot of logic, separate logic in multiple private methods
· Create private methods within class and always put them below related public method(s), don’t put them on the bottom of the class – this way it makes other developers much easier to read your code.
· Methods should NOT have more than 3 parameters – if there are more than 3 already, find a way to wrap parameters into meaningful object
· Each method should have one intent – do not use and in the method naming. For example don’t name doThisAndThat() method, instead create a name for that method that should represent wrapped meaning for both this and that.
[bookmark: _Toc75763126]If/While/For brackets
· Make sure that there is a bracket { } for each if, while or for statement, regardless of whether it contains one line of code or not , same goes for the else part.

Example:

If(boolean) {
//Do something
}
 else {
//Do something else
}
· Note: Since we have started using Java 8, please take a look at streams API and its implementation and replacement of for each statement. It also has other benefits so make sure to check them.
[bookmark: _Toc75763127]Alignment
· Alignment should be mostly fixed with formatter, however the general idea is to have the methods with the same alignment, as well as the bracketed code. This is an example of good alignment:
[image:]

[bookmark: _Toc75763128]Spacing
· Separate methods with empty line
· Dense lines of code should be related to one another – if there is a close association within multiple lines of code, then there is no need for spacing. Same goes with variable declaration as well.

Example:

[image:]

Notice how response part is separated from the other parts.

[bookmark: _Toc75763129]Constructor declaration
Sometimes there is a need to have multiple constructors for different purposes within the same class, which leads to a confusion – in what situation is which constructor being called? For that reason, a good practice is to declare private constructors and public static methods that return the object using those private constructors. This way we can give meaningful name to a reference to constructor and prevent confusion. This is an example:

[image:]

[bookmark: _Toc75763130]General SQL rules
Same as with Java rules, in order to make our SQL scripts more readable, it is necessary to follow these rules. Please note that some of these rules are not fully followed at this moment, so when you find an SQL file that can be edited, make sure that you edit those files by following the rules.

[bookmark: _Toc75763131]View Naming

· When naming views, make sure that it contains V prefix and underscore instead of space
· Generally, the next noun that comes after “V_” should be the root table from which we create view, for example if we start FROM USER (Or from another view that has root table USER), then created view should start with V_USER. What comes after V_USER is up to developer, but it should contain some meaningful name for the intent of created view. For example, V_USER_COURSE_SCORE is meaningful and self-explanatory name.

[bookmark: _Toc75763132]View creation
· Make sure that you have put new view into appropriate position in create_views.sql script, also make sure that view is put and commit in the right place

· When view is created in SQLDeveloper, it adds the following in CREATE statement:
 CREATE OR REPLACE FORCE EDITIONABLE VIEW "YTM4"."V_QUIZ_INSTANCE_RESULT" (LIST OF COLUMNS) AS

NEVER commit a view with bolded declarations, this is how this part of view should look like:
 	CREATE OR REPLACE VIEW "V_QUIZ_INSTANCE_RESULT" AS

· Put aliases when declaring columns in SELECT statement if necessary, DON’T put aliases in brackets of CREATE statement. These are the examples:

BAD EXAMPLE:
[image:]
This usually leads to many problems when editing view. If a person that edits the view deletes stuff from brackets, he has a hard time to put alias names as they were before. Even by not deleting brackets, it is much harder to keep track of aliases this way because we have to compare the order of brackets and declared columns in SELECT statement.

GOOD EXAMPLE:
[image:]
By not putting them into brackets but next to related column, we make sure that each alias is easier to edit and read.
[bookmark: _Toc75763133]View SQL Formatting
SQLFormatter tool is used for formatting views SQL. The tool runs from batch script located in db\dbmodel-postgres folder of GetCertified project. The script formats all *.sql files in the db\dbmodel-postgres\views folder and its subfolders that starts with ‘V_*’ according to the naming convention for the views files. Whenver the existing view is changed or the new one is added, this script has to be ran to format all changes.
[bookmark: _Toc75763134]YouTube Videos for Web Developers
	Name
	Description

	Model and logic layer
	

	Webview layer and example
	

	2018-Gdao standardized web development
	

	Add menu item
	Add menu item and link it to the screen

	Create standard YTM screen
	Create stadard YTM screen that is a startinh point to start adding elements. Explan usage of CSS SAAS franework

	Create table
	Create standard table and link it to database table. Also explain satndard features line button that has action on the table.

	Create Tabs
	Create tabs panel with some standar features

[bookmark: _Toc75763135]Layers (db, model, webview)
[bookmark: _Toc75763136]Architecture diagram
This diagram represents YTM architecture:
[image:]

 Legend:
[image:] represents „is a“ relation (extends)
[image:] represents „has a“ relation (implements)
[image:] represents „is a but not necessarily“ relation (can extend but not necessarily)
[image:] represents „uses“ relation

[bookmark: _Toc75763137]DB – layer (standardized in Dental, from DB-Analyzer tag 6.2)
[bookmark: _Toc75763138]Custom Data classes – basic rules
These classes are used for performing direct operations on the database. They are located here:
[image:]

Note: Since there are sample data classes that contain methods for the most commonly used operations on the database, data classes should be created only if there is a need for a custom method that is not defined within the sample class.

Package “table” contains all data classes related to tables in the Database while, “views” contains all view based data classes. Ideally, these Data classes are being called by provider methods from the “model” sub project, mostly by BaseProvider class – but there are some exceptions to this rule.

 General rules:
1. Each Data class should extend from Sample data class (chapter „Sample data classes“)
2. Every class responds to its object in database.
3. Never obtain connection in these classes. Connections are passed from providers and also every operation done on Connection objects should be done in provider classes. That would mean that you should never use methods of Connection object inside Data classes – just pass them as a parameter where necessary.
4. Use batch commands where possible. Batch commands are faster compared to iterating through Objects and inserting them one by one. Take a look at the examples for batch commands (batchInsert and batchUpdateTo). These are located in the sample data classes.
5. Each Data class method has to throw GDAOException.

Naming rules:
1. Data classes should always start with “Data” prefix, and if VIEW it should have a “V” prefix. For example:
· DataCourse (Table)
· DataVUserFullInfo (View)
2. Use low level naming – don’t use abstract method names. Since these Data classes will be called for various modules, they should be called as “technical” as possible. For example:
· Good: getUserByUserId
· Bad: getUserForLogin (It does not necessarily mean that this method will be called just for login method)
[bookmark: _Toc75763139]Language properties
Language properties are located inside the following package:
[image:]

Currently we have English (en) and Serbian (sr) versions of messages and for each new message - both of these files have to be edited. These messages are accessed and displayed when required and every type of descriptive text that is visible inside web application should be stored in these property files.
That means that you should never hardcode messages – always use property files.

[bookmark: _Toc75763140]Sample data classes
These data classes are automatically generated by GDAO and stored inside:
[image:]

Sample data classes implement the interface called YtmDataSample that contains all commonly used methods within the YTM application.

In case of a new custom method, when creating Data class for new table or view, it should extend the sample class, so you can already have the following methods ready

These are the methods that are currently being implemented within Sample data classes:
· insertTo(Connection, UsersTo)
· batchInsert(Connection, ArrayList<UsersTo>)
· updateTo(Connection, UsersTo)
· batchUpdateTo(Connection, ArrayList<UsersTo>)
· updateWithParameters(Connection, HashMap<Object, Object>, String)
· deleteByColumnId(Connection, BigDecimal)
· getRecordsForPaging(Connection, int, int, String, String, Map<String, Object>)
· getRecordsFilterCount(Connection, Map<String, Object>)
· getSingleRecordByParameter(Connection, String)
· getRecordsByParameter(Connection, String)
· getSingleRecordWithParameters(Connection, HashMap<Object, Object>)
· getMultipleRecordsWithParameters(Connection, HashMap<Object, Object>)
· selectUsingQuery(Connection, String)
· deleteUsingQuery(Connection, String)
· countUsingQuery(Connection, String)
· selectUsingQuery(Connection, String, Object...)
· deleteUsingQuery(Connection, String, Object...)
· countUsingQuery(Connection, String, Object...)
· updateWithParameters(Connection, HashMap<Object, Object>, String, Object...)
· getTabInstance(Connection)

[bookmark: _Toc75763141]Model layer (standardized in dental)
[bookmark: _Toc75763142]Custom Provider classes
NOTE: After the implementation of BaseProvider, this class is much less used since all basic operations can and should be using BaseProvider + GdaoStatement classes. When it comes to multiple transactions that have to be atomic, Providers come into good use. An atomic transaction is an indivisible and irreducible set of database operations such that either all occur, or nothing occurs. After refactoring, provider classes should contain methods that contain atomic transactions, as well as custom methods that are not covered by the BaseProvider.

This is an example of a method that contains atomic transaction:
[image:]

Notice the Connection object – we first instantiate it and set auto commit to false (since it is true by default). Then after all the operations in the database, we commit the changes if nothing went wrong, otherwise throw an exception. Finally, we must return the connection since it has done its job for this situation, otherwise the connection will remain open and will eventually clog the database.

These are the rules for the provider method:

1. Every provider suits a certain DB object or relation, therefore we can have CourseProvider (methods from DataCourse, DataVCourse ...) , CourseClassProvider (DataVClassCourse, DataCourseClass)
2. Provider method that calls methods from dataClasses must not call any other provider method that calls dataClasses. (Must not create connection twice without closing it)
3. Provider methods that work directly with data classes should return either void or (after refactoring) Entities.
4. Public Provider methods should throw only Message Exception. Currently, there are situations when GDAO is being returned and this should be refactored.

[bookmark: _Toc75763143]Base Provider
BaseProvider is a generic class that represents the wrapper class for Data class on the model layer. It wraps all the methods from DataYtmSample interface that Data class implements. In the provider’s methods, a connection with the base is taken and Transfer objects are encapsulated in Entities. The picture below shows the part of the Base Provider class definition. Class is parametrized with three other classes (DataSample, TransferObject and Entity). Also, from the definition of insert method, it can be seen that the communication is switched from Transfer objects to Entities and vice versa.

[image:]
The code below shows how the BaseProvider object is instantiated using the appropriate parameters with. Constructor of the BaseProvider class takes two parameters which represent the class literals of DataSample and Entity class. These parameters are necessary for dynamic creation of Entity and DataSample objects in generic BaseProvider class.

[image:]
In addition to this, it is highly advised to create public static method within entity that returns an instance of BaseProvider class that is related to that particular entity. This way, it is much easier and cleaner to manipulate the entity from the controller classes.

This is an example:

[image:]
[bookmark: _Toc75763144]Custom Entity classes
1. Entity classes are used for logical wrapping of transfer objects so for a transfer object ex. QuizDefinitionTo there can be multiple Entity wrappers:
· EntityQuizTaker
· EntityQuizManager
· EntityQuizInformer
2. Entity classes should be extended from EntityApi class.
3. Each entity class should implement Entity interface template which contains:
· Leading transfer object – for example QuizDefinitionTo named to. That is the only place where TransferObjects are referenced as fields
· Side related data consisted of other entities for example List of all EntityQuestions, EntityUser (as manager etc.)
· insert() - usually calls provider method or methods
· update()- usually calls provider method or methods
· delete()- usually calls provider method or methods
· refreshRelatedData() – fetches data that is not initially needed or shown on page
· Never put logic in any getter!
· Always fetch only data that is needed for manipulation
· There can be other methods in entities that perform specific actions
· The only entity methods that can be called from xhtml page are getter methods for displaying data. All other methods MUST be wrapped with controller methods.
Here is a code for EntityApi class that every EntityClass should extend, and a sample EntityClass.

API

package com.mallocinc.ytm.model.entities.api;

public abstract class EntityApi<T> {
	
	private T to;
	
	/**put related entities and entity lists here if needed**/
	
	public abstract void insert();
	public abstract void update();
	public abstract void delete();
	public abstract void refreshRelatedData();
	
	/**put more logic methods here if needed*/
		
	public T getTo() {
		return to;
	}
	public void setTo(T to) {
		this.to = to;
	}
	
}

IMPLEMENTATION

package com.mallocinc.ytm.model.entities.api;

import com.mallocinc.ytm.database.generated.to.QuizDefinitionTo;

public class EntityQuizTaker extends EntityApi<QuizDefinitionTo>{

	public ArrayList<EntityTakeQuestion> questionsToTake;
	
	public EntityTakeQuestion fetchNextQuestion{
		//some sample method
	}
	
	@Override
	public void insert() {
		// TODO Auto-generated method stub
		
	}

	@Override
	public void update() {
		// TODO Auto-generated method stub
		
	}

	@Override
	public void delete() {
		// TODO Auto-generated method stub
		
	}

	@Override
	public void refreshRelatedData() {
		// TODO Auto-generated method stub
		
	}

}
[bookmark: _Toc75763145]Entity Report Classes
Classes for any type of report in our system have to extend EntityReportApi abstract class. EntityReportApi abstract class extends EntityApi abstract class (Section 5.6.2) which has a Transfer Object as parameter, so every implementation of EntityReportApi is linked with some row of the particular view or table in database.
[image:]
All mutual functionalities for many types of reports have to be placed in one interface with methods for every of that functionalities. All interfaces have to be placed in package from the picture below.
[image:]
Implementation classes of EntityReportApi have to extend EntityReportApi and have to be placed in package from the picture below. Also, implementation classes have to implement interfaces for mutual functionalities (See the picture below). Implementation class can have some specific methods for that type of report.

[image:]
For report functionalities that have to affect more than one row in specific table or view, EntityReportListApi abstract class has to be extended. EntityReportListApi class has the list of EntityReportApi objects (picture below). On this list group calculations can be done in Implementation class.
[image:]
Example (Average number of points on quiz) of implementation of EntityReportListApi is shown in the picture below.
[image:]
Of course, some mutual functionalities for different EntityReportList implementations should be put in one interface.

[bookmark: _Toc75763146]Webview (Ready to use)
[bookmark: _Toc75763147](Important) Referencing and naming between xhtml and controller
At this point of development, the most crucial and fragile part of YTM code is the relation between xhtml files and Controller classes. Causes for the issue with xhtml usually comes up with fuzzy naming or by violation of Law of Demeter, that are afterwards very hard to debug. For future development, it will be mandatory to have the correct approach to referencing and naming from xhtml.

1. Referencing
The general rule is the following: simplier the xhtml – the better. From a reference standpoint, in order to achieve simplicity it comes to one simple rule:

Use Law of Demeter and avoid this: value="#{userProfile.flightProgressController.flightBlockProgressController.blockProgress.block.codeName}" – you will have a nightmare only if you change any instance name within classes that refer to these objects. Law of demeter in our case says „xhtml file should now only about its corresponding controller, and lazy tables within them (for now)“. By following this rule, debugging time and potential bugs will be reduced dramatically.

Example: Lets say that we want to access to email field within our EntityUser class. Instead of going all the way through referencing within xhtml file – it should only refer to Controller class that has a reference to EntityUser. So instead of: controller.entity.email in xhtml, we should have controller.getEntityUserEmail(). This way, xhtml is dependant only to controller class. See pros and cons of Law of Demeter on the internet, but in the long run – it will dramatically reduce maintenance and bugs.

In addition to this, use the benefit of private and public methods within controller classes. If method is private, then it cannot be accessed from xhtml and therefore we dont have to check references for that method within xhtml files.

2. Naming
When it comes to naming, like everywhere else in the application – the best approach is to have a standard by which you call method names. This naming convetion proved to be benefitial so it should be followed initially, but it can be changed anytime for the better. These are naming rules:
· Reference to listener methods should be named like this „onEventDescriptionSelect“, where EventDescription is an event from the front end – for example „onFinishQuizButtonSelect“, „onNextQuestionButtonSelect“ etc.
· Reference to render methods should be named like this „renderEventDescription“ – for example „renderFinishButton“
· Reference to disable methods should be named like this „disableEventDescription“ – for example „disableFinishButton“

Having this in mind, since Controller methods are the biggest and, at this point, the most complex – there should be a standard on where each method should be in the Controller class. This is the skeleton:

· Final global variables/Enums
· Public global variables
· Private global variables

· Constructor(s)

· Init method (with its private methods below it)

· Listener methods (with their private methods below them)
· Render methods (with their private methods below them)
· Disable methods (with their private methods below them)

· On the bottom of the class, put getters and setters of global variables (If necessary)

[bookmark: _Toc75763148]Controllers and xhtml rules
1. Each section (eg. Panel or navigation tree) should be controlled by single controller
2. Each controller should be able to standalone and to be a part of other controller
3. Each controller will contain render flags for inner controller
4. Each xhtml section must be within a facet and reusable
5. Pages are in layout and there are layout sections eg. ui:define name=”westContent”
6. Dialogs must be in dialog define section
7. Facets can depend from each other (updating each other) and can consist each other
8. Facets on the same layer that are connected (eg. button facet and center content facet) must have starting code of the same controller. (DONT MIX parent and child code).
9. Never put form inside the form
10. Methods that calls provider classes should be surrounded by try catch and throw FacesMessage.
11. Update only what is really necessary. Always use process and update attributes.
12. Dont use Expression language where the logic can be put in backing bean, or even worse hardcode string.
13. Put commons such as ManageUser and methods declarations such as init(), resetFlags() etc inside controllers.commons.SuperController.java and extend them.
BAD EXAMPLE:
rendered="#{!user.internalNetwork and (quizTaker.instanceToTake.quizInstance.QUIZ_NETWORK_ACCESS_CODE eq ‘NAC’)}"
GOOD EXAMPLE:
rendered="#{quizTaker.canTakeQuiz}”
14. There is no need for more than one Application scoped bean within application

[bookmark: _Toc75763149]Outer controller code
@ManagedBean(name="programs")
@ViewScoped
public class ProgramsController extends SuperController{

 ProgramController curProgram;
 boolean viewAllPrograms=true; //initial visible screen
 boolean viewCurProgram =false; //hidden screen
 AllProgramsLazy allProgramsList=new AllProgramsLazy(); //list of all programs

 public void openCurProgram(BigDecimal id){
 curProgram=new ProgramController(id);
 resetFlags(); //sets all render flags to false
 viewCurProgram=true; //renders desired section
 }

}

[bookmark: _Toc75763150]Inner controller code
@ManagedBean(name="prog")
@ViewScoped
public class ProgramController {

 EntityProgram program;
 BigDecimal progId;
 boolean shouldInit=true;
 boolean viewProgramGroups;
 boolean viewProgramInfo;

 public ProgramController (BigDecimal progId) { //constructor is usually called from outer controller
 consImpl(progId);//implementation of constructor
 }

 public void init() { //when stands alone on program.xhtml this is a prerender method which is being called
 if(shouldInit){ //we need this because method is called after every action (before every render) and we need it only ones
 consImpl(progId);
 shouldInit=false;
 }

 }

 consImpl(BigDecimal progId){
 try{
 program = new ProgramProvider().getProgramById(progId);//fetching program

 }
//code continues

[bookmark: _Toc75763151]Outer controller webpage
<ui:..some tags..>
 <ui:define name="metadata">
 <f:metadata>
 <!-- programs controller doesnt need init. Since it opens all programs list. -->
 </f:metadata>
 </ui:define>

 <ui:define name="titleContent">
 <!-- we usualy put page headline or breadcrumbs here -->
 </ui:define>
 <ui:define name="eastContent"> <!-- we usualy put boolean buttons here -->
 <h:form id="butForm">
 <ui:include src="/pages/programParts/progEastFacet.xhtml">
 <ui:param name="selectedProgram" value="#{programs.curProgram}" />
 <ui:param name="viewCurProgram" value="#{programs.viewCurProgram}" />
 <ui:param name="updateOnSelect"
 value=":curProgForm :classesForm :butForm" /> <!-- we can always pass different stuff for update depending on page. Facet knows only about #{updateOnSelect} -->
 </ui:include>
 </h:form>
 <ui:define>

 <ui:define name="centerContent">
 <ui:include src="/pages/programParts/progCenterFacet.xhtml">
 <ui:param name="selectedProgram" value="#{programs.curProgram}" /> <!--object of current program -->
 <ui:param name="viewCurProgram" value="#{programs.viewCurProgram}" /> <!-- renderer of current program -->
 </ui:include>
 </ui:define>

 <ui:define name="dialogs">
 <!-- dialogs always go here -->
 </ui:define>
</ui:composition>

[bookmark: _Toc75763152]Inner controller webpage (standalone webpage for single program)
<ui:..some tags..>
 <ui:define name="metadata">
 <f:metadata>
 <f:viewParam name="itemId" value="#{prog.progId}" /> <!--here we open specific program -->
 <f:event type="preRenderView" listener="#{prog.init()}"/>
 </f:metadata>
 </ui:define>

 <ui:define name="titleContent">
 <!-- we usualy put page headline or breadcrumbs here -->
 </ui:define>
 <ui:define name="eastContent"> <!-- we usualy put boolean buttons here -->
 <h:form id="butForm">
 <ui:include src="/pages/programParts/progEastFacet.xhtml">
 <ui:param name="selectedProgram" value="#{prog}" /> <!-- we pass the whole bean -->
 <ui:param name="viewCurProgram" value="true" />
 <ui:param name="updateOnSelect"
 value=":curProgForm :classesForm" /> <!-- we can always pass different stuff for update depending on page. Facet knows only about #{updateOnSelect} -->
 </ui:include>
 </h:form>
 <ui:define>

 <ui:define name="centerContent">
 <ui:include src="/pages/programParts/progCenterFacet.xhtml">
 <ui:param name="selectedProgram" value="#{prog}" />
 <ui:param name="viewCurProgram" value="true" />
 </ui:include>
 </ui:define>

 <ui:define name="dialogs">
 <!-- dialogs always go here -->
 </ui:define>
</ui:composition>
[bookmark: _Toc75763153]Facet example
Always put comments about the facet.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
	xmlns:ui="http://java.sun.com/jsf/facelets"
	xmlns:h="http://java.sun.com/jsf/html"
	xmlns:p="http://primefaces.org/ui"
	xmlns:f="http://java.sun.com/jsf/core">
<!— selectedProgram: ProgramController passed as a reference 		

<h:form id="curProgForm">

			<p:panel id="curProgram"
styleClass="centerPanel oneThirdPanel SHOWAUSERSParent leftSideHint ui-content-padding-none dataListUnits"
				rendered="#{selectedProgram.viewInfo}" toggleable="true"
				closable="false" widgetVar="curProgVar">
.... and so on...

[bookmark: _Toc75763154]GDAO Statement

In GdaoStatement class you can see all methods for creating sql query like method to put AND, OR... or some methods to reset query or put parentheses.

We use the hash map to preserve the values we want to we want to access several times.
String pera = "pera";

map.put("p", pera);

- termConst (for const value) and termVal (variable value from hashmap) we use for creating some part of query.

 E.g, if we want to write " NAME LIKE '%P%' ",
we will use " termConst(GdaoTerm.LIKE, "NAME", "P")" but if we want some value from hash map then we have to use " termVal(GdaoTerm.LIKE, "NAME", "p")".

There is some way to creating statement:

Example 1:

[image:]
Now, our query look like "WHERE (EXERCISE_ID::text LIKE '%vezba%' OR EXERCISE_NAME::text LIKE '%vezba%')"

Example 2:

HashMap<String, Object> map = new HashMap<>();
		String adis = "adis";
		map.put("a", adis);
		
		GdaoStatement stm = new GdaoPagingStatement("COURSE_NAME", 0, 10, GdaoPagingStatement.DESC);

		stm.setOperatorsAndValuesMap(map);

		stm.termConst(GdaoTerm.EQUALS, "COURSE_ID", new BigDecimal(4002)).and().not().leftParen()
			.termConst(GdaoTerm.LIKE, "USERNAME", "ADM").or().termVal(GdaoTerm.LIKE, "FIRST_NAME", "a").or().termConst(GdaoTerm.LIKE, "LAST_NAME", "ADM").rightParen();

		stm.not(stm);

Query:
	NOT (COURSE_ID = 4002 AND NOT (USERNAME::text LIKE '%ADM%' OR FIRST_NAME::text LIKE '%adis%' OR 	LAST_NAME::text LIKE '%ADM%'))

[bookmark: _Toc75763155]Lazy example
We can use lazy loading because we can “lazy-load” the children, which means that it does not actually load all the children when loading the parent. Instead, It loads then when requested to do so.

public class SelectLessonUsersLazy extends LazyDataModel<EntityUserLesson> implements SelectableDataModel<EntityUserLesson>, SelectLazyApi<EntityUserLesson> {

	private List<EntityUserLesson> datasource = new ArrayList<>();

	private int tableHeight = new Integer(UtilProperites
			.getSettingsProperty("tableHeight"));
	private ArrayList<EntityUserLesson> filteredItems;
	…
	
	
	public SelectLessonUsersLazy(BigDecimal lessonId, String userLessonRole) {
		this.lessonId = lessonId;	
		this.userLessonRole=userLessonRole;	
	}	
	@Override	
	public List<EntityUserLesson> load(int first,
			int pageSize,
			String sortField,	
			SortOrder sortOrder,
			Map<String, Object> filters
) { …	

		filters.put("LESSON_ID", lessonId);
		filters.put("USER_LESSON_ROLE", userLessonRole);
			}

[bookmark: _Toc75763156]Lazy Example – upgraded
In every project we should have SelectEntityLazy class which is the common class for all Lazy classes and they should extend it.

[bookmark: _Toc75763157]Select entity lazy
SelectEntityLazy is a generic class that wraps LazyDataModel and it is used to load entities from database in primefaces’ DataTable.
The picture below shows the part of the SelectEntityLazy class definition. It is parametrized with Entity class that implements EntityLazyApi , which represents the entities that are displayed in the DataTable.

[image:]

The picture below shows how the Entity class definition should in order to instances of that entity can be selected lazy.

[image:]
The picture below shows how the SelectEntityLazy class should be instantiated. The constructor takes two parameters, the first represents the default sort column and the second one is the BaseProvider for entities.
[image:]
If you need different SelectEntityLazy functionalities, SelectEntityLazy class should be extended and specific methods that represent that functionalities should be overridden.

[bookmark: _Toc75763158]Select entity lazy (GDAO statement)
private GdaoStatement additionalStatement = new GdaoStatement();
public SelectEntityLazy(BaseProvider<?, ?, T> provider) {
		super();
		this.defaultSortField = null;
		this.provider = provider;
		additionalStatement.setOperatorsAndValuesMap(additionalFilters);}
...
public List<T> load(int first, int pageSize, String sortField, SortOrder sortOrder, Map<String, Object> filters) {
		if(!additionalFilters.isEmpty()) addFilters(filters);
		filters=convertFilters(filters);
		sortField=convertSort(sortField);
		if(sortField == null)
			sortField= defaultSortField;
		if(sortOrder == null)
			sortOrder= SortOrder.ASCENDING;
		DbUtil dbUtil = new DbUtil();
		List<T> result = new ArrayList<>();
		try {
			GdaoStatement gdaoStatement = prepareStatement(filters, first, pageSize, sortField, 				dbUtil.translateSortOrder(sortOrder));

			if(gdaoStatement.getStatement().isEmpty()) 									gdaoStatement.setStatement(additionalStatement.getStatement());
			else gdaoStatement.and(additionalStatement);
			log.info(gdaoStatement.getQuery());

			result = provider.selectUsingGdaoStatement(gdaoStatement);
			log.info(gdaoStatement.getQuery());

			GdaoStatement countStatement = new GdaoStatement();

			countStatement.setStatement(gdaoStatement.getStatement());
			log.info(gdaoStatement.getQuery());

			int rowCnt = (int) provider.selectCountGdaoStatement(countStatement);		
			this.setRowCount(rowCnt);
		} catch (MessageException e) {
			FacesUtil.throwMessage(e);
			return null;
		}
		
		datasource.addAll(result);

		return result;

	}

private GdaoStatement prepareStatement(Map<String, Object> filter, int firstPage, int pageSize, String sortField, String sortOrder){
		GdaoStatement statement = new GdaoPagingStatement(sortField, firstPage, pageSize, sortOrder);
		boolean first = true;
		for(String key: filter.keySet()){
			Object value = filter.get(key);			
			if (first) first = false;
			else statement.and();
			statement.termConst((value instanceof String)?GdaoTerm.LIKE:GdaoTerm.EQUALS, key, value);
			
		}
		return statement;
	}

[bookmark: _Toc75763159]Reusable search components
Each search component consists of a Controller (which implements the Callback interface), a Facet (the controller is forwarded to it) and a Face converter . The surrounding bean implements the Callback method.

First of all, we have to create interface:		
	public interface CallbackSelectExercise {

 		 public void onExerciseSelect(SelectEvent event);

		}

Then, next step is creating Controller:
	
public class CourseExerciseSearchController {

 CallbackSelectExercise parentController;
 private int minQueryLength = 0;
 private int queryDelay = 1000;
 private EntityExercise curSearch = null;
 BigDecimal courseId;

 BaseProvider<DataExerciseSample, ExerciseTo , EntityExercise> provider =
 new BaseProvider<>(DataExerciseSample.class, EntityExercise.class);

 public CourseExerciseSearchController(CallbackSelectExercise parentController, BigDecimal courseId) {
 super();
 this.parentController = parentController;
 this.courseId = courseId;
 }

 public List<EntityExercise> completeExercises(String str) {
 String[] splited = str.split("\\s+");

 GdaoStatement stmt=new GdaoPagingStatement(Columns.EXERCISE_NAME.toString(), 0, 		10,GdaoPagingStatement.ASC);

 stmt.leftParen();
 boolean first=true;
 for(String query: splited) {
 if(!first){
 stmt.or();
 }
 stmt.termConst(GdaoTerm.LIKE, Columns.EXERCISE_ID.toString(), query)
 .or()
 .termConst(GdaoTerm.LIKE, Columns.EXERCISE_NAME.toString(), query);

 first=false;

 }
 stmt.rightParen();

 List<EntityExercise> results = null;
 try {
 results = provider.selectUsingGdaoStatement(stmt);
 } catch (MessageException e) {
 FacesUtil.throwMessage(e);
 }

 return results;
 }

	getters and setters...

Creating converter and facet

@FacesConverter("exerciseSearchConverter")
public class CourseExerciseSearchConvert implements Converter {

 BaseProvider<DataExerciseSample, ExerciseTo , EntityExercise> provider =
 new BaseProvider<>(DataExerciseSample.class, EntityExercise.class);

 public Object getAsObject(FacesContext fc, UIComponent uic, String value) {
 if (value != null && value.trim().length() > 0) {
 try {

 return findExercise(value);

 } catch (NumberFormatException e) {
 throw new ConverterException(new FacesMessage(FacesMessage.SEVERITY_ERROR, "Conversion Error", "Not a valid test."));
 }
 } else {
 return null;
 }
 }

 public String getAsString(FacesContext fc, UIComponent uic, Object object) {
 if (object != null) {
 return String.valueOf(((EntityExercise) object).getTo().getEXERCISE_ID());
 } else {
 return null;
 }
 }

 private EntityExercise findExercise(String value) {
 BigDecimal id = new BigDecimal(value);
 try {
 HashMap<Object, Object> filters = new HashMap<Object, Object>();

 filters.put("EXERCISE_ID", id);

 return provider.getSingleRecordWithParameters(filters);
 } catch (MessageException e) {
 FacesUtil.throwMessage(e);
 }
 return null;
 } }

[image:]

After all, we have to instance our controller and implements method for onSelect

public class PlanOrderRecordController extends SuperController implements CallbackSelectCourseMember,CallbackSelectAirCraft,CallbackSelectExercise
{
	EntityVPlanOrderRecord planOrderRecord;

	CourseMemberSearchController memberSearchController;

	AirCraftSearchController airCraftSearchController;

	CourseExerciseSearchController courseExerciseSearchController;

	
	public PlanOrderRecordController(EntityVPlanOrderRecord planOrderRecord) {
		 memberSearchController=new CourseMemberSearchController(this, planOrderRecord.getTo().getCOURSE_ID());
		 airCraftSearchController=new AirCraftSearchController(this);
		 courseExerciseSearchController=new CourseExerciseSearchController(this, planOrderRecord.getTo().getCOURSE_ID());
		this.planOrderRecord=planOrderRecord;
	}

		...

public CourseExerciseSearchController getCourseExerciseSearchController() {
 return courseExerciseSearchController;
 }

 public void setCourseExerciseSearchController(CourseExerciseSearchController courseExerciseSearchController) {
 this.courseExerciseSearchController = courseExerciseSearchController;
 }

 @Override
 public void onExerciseSelect(SelectEvent event) {
 EntityExercise exercise=(EntityExercise) event.getObject();
 planOrderRecord.getTo().setEXERCISE_ID(exercise.getTo().getEXERCISE_ID());
 planOrderRecord.getTo().setEXERCISE_NAME(exercise.getTo().getEXERCISE_NAME());

 }

[image:]

[bookmark: _Toc75763160]System (application level) parameters management
The class responsible for system parameters management is SystemParametersManager from com.mallocinc.ytm.model.providers.system package. This class is a global singleton, which means that only instance of this class exists in the runtime. SystemParametersManager on instantiation loads all system parameters stored in database and stores them in the memory. So, when we need a value of particular system parameter, we don’t need to read it from database every time, we should read it from the instance of SystemParametersManager.

[bookmark: _Toc75763161]How to use SystemParametersManager
[bookmark: _Toc75763162]Getting the instance
SystemParametersManager systemParameterManager = SystemParametersManager.getInstance();
[bookmark: _Toc75763163]Getting value of system paramter
communityFlag = systemParameterManager.getBooleanParameterValue(UtilSystemParameter.CODE_COMMUNITY);
Types of system parameters can be String, boolean, Blob and BigDecimal, and there is a method getting value for each type. You just need to pass the code of the system parameter.

[bookmark: _Toc75763164]Changing value of system paramter
systemParameterManager.changeParameterValue(UtilSystemParameter.MODULE_CODE_AD, true);
You need to pass code of system paratemer and new value. The value of system parameter will be changed both in memory and the database.

[bookmark: _Toc75763165]Good practices
For every system parameter, two methods should be introduced in SystemParametersManager.
1. One for getting system parameter value. For example:
public static boolean shouldDisplayLanguage() {
 return getInstance().
getBooleanParameterValue(UtilSystemParameter.CODE_DISPLAY_LANGUAGE);
}

So, we can check the value of “display language” system parameter by:
SystemParametersManager.shouldDisplayLanguage();

2. One for changing system parameter value. For example:
public static void changeDisplayLanguageValue(boolean value) throws MessageException {
getInstance().changeParameterValue(UtilSystemParameter.CODE_DISPLAY_LANGUAGE, value);
}
These two methods can simplify the code when you work with specific system parameter.
[bookmark: _Toc75763166]Important rules
1. Don’t read system parameters directly from database. Use SystemParametersManager for that.
2. Update the values of system parameters through SystemParametersManager.
[bookmark: _Toc75763167]Session level parameters
When the user logs in the application, HTTP session associated with that user is created, and all significant data for the management of the user session is stored in the session map. The main session parameter is ID of logged in user. Almost all other session parameters can be loaded from database, but because those parameters are frequently used, it’s more efficient to load them in the memory (session parameters) only ones on the session initialization and not to query the database every time to get them. Class responsible for the management of the session data currently logged in user is ApplicationUser located in com.mallocinc.ytm.webview.session package. This class has granular structure which consist of a few classes each responsible for management of some independent parts of user session data:
1. ApplicationUserData – responsible for elementary session data like user account information, user preferences, IP address, device, session ID
2. ApplicationUserHints – responsible for management of user hints on session level
3. ApplicationUserRoles – responsible for management of user roles on session level
[bookmark: _Toc75763168]Getting ApplicationUser object for currently logged in user
Wherever you need to use session parameters you can get the ApplicationUser object like this:
private ApplicationUser applicationUser = HttpSessionUtil.getCurrentUser();
See the Javadoc for more information about the available data in the ApplicationUser object.
[bookmark: _Toc75763169]Useful YouTestMe Tutorials
Up to date list of tutorials can be found on YouTestMe Wiki:
https://wiki2.youtestme.com/index.php/Useful_Links
Dev account:
Username: Ytmdev
Password: 1Dev#@!

	Name
	Category
	Create date/ Creator
	Description

	Model and logic layer
	Backend
	29.11.2016.
Danilo Sretenovic
	Tutorial about ytm.db and ytm.model
(Sligthly outdated, you can watch it informately)

	Webview layer and example
	Backend
Frontend
	29.11.2016.
Danilo Sretenovic
	Tutorial about ytm.webview
(Sligthly outdated, you can watch it informately)

	2018-Gdao standardized web development
	Backend
Frontend

	10.09.2018.
Danilo Sretenovic
Adis Dijab
	Architecture description with examples of coding standard

	1. Introduction - Importing project into Eclipse and setting environment
	Backend
Frontend
	31.07.2019.
Adis Dijab
	Setting eclipse enironment and importing GetCertified project
(Most recent)

	2. Power designer - modeling database
	Backend
	31.07.2019.
Adis Dijab
	PowerDesigner tutorial, Modeling database, generating sql code, writing database patch
(Most recent)

	3. GDAO - generating db layer code
	Backend
	31.07.2019.
Adis Dijab
	Generating database layer with Database Analyzer
(Most recent)

	4. Entity Provider Refactoring Concepts
	Backend
	31.07.2019.
Adis Dijab
	Coding standard for entites and providers, refactoring code
(Most recent)

[image:]	YouTestMe Web Development Manual

Page 1 of 69
[bookmark: _Toc75763170]Logging in Java
Logging is essential part of all Java code and it has purpose to give information about:
· what is going on so we can ensure that system is running as expected and problem free
· how long it takes to execute partucular function (essential for coding for good performances)
· errors on the system with relevant information required to quckly solve the problem

Below are guidelines about log4j Java logging.

	[bookmark: _Hlk75763674]Logging Level
	Description
	Example

	ERROR
	This is event that support team has to be immediately notified about.
It is always turned on in all environments.
Email should be sent to support team immediately.
	· Could not read or write into a database
· No disk space left

	WARNING
	Events that requre attention but do not immediately affect availability of the system.
It is always turned on in all environments.
	· User XYZ is locked due to 5 unsuccesfull log in attempts
· Supperuser logged in
· One of the Tomcat servers in the cluster is shut down

	INFO
	Events that administrator of the system is interested in.
It is always turned on in all environments.
	· Application started on 2021-06-21 10:18:32
· System parameters are sucessfully loaded in memory
· Application received shut down signal
· Loaded 1,439 questions from file “questions.xlsx”
· User X logged in to the system

	DEBUG
	Events that are used for debugging and performance testing.
It is turned on in development and QA. environment. It is tuerned on in production only on demand.
	· Function XYZ started
· Function XYZ finished
· Starting SQL query XYZ
· Finished SQL query XYZ
· Inserted 4 records in database table XYZ (this type of logging should be automatically covered by GDAO framnework)

image1.png
IMBORTANT !

We need to use forward slashes because variables are used in SQL*ELUS

Run cmd as administrator and run this script.

Define local variables
SET DATABASE_LOCATION-local

SET NEW_DB_USER=C$#512020

SET NEW_PASSWD=C$##C12020

t:User with system permissions (can add and delete user)
If that user do not exists into db, create it.

IF "SDATABASE LOCATION:"—mlocal" GOTO local server
IF "SDATABASE_LOCATIONS"=="ytm" GOTO ytm_server
GOTO db_location error

::Remote server
SET SYSTEM USER-sys

SET SYSTEM PASS-oracle

SET ORACLE_INSTANCE=//192.168.1.106:1521/0rcl

GOTO start_creating new_database

::local server
SET SYSTEM USER-SYS

SET SYSTEM PASS-Milosll

SET ORACLE_INSTANCE=//localhost:1521/0rcl

IF "SNEW DB USERE"—"M GOTO user_pass_error
IF "SNEW PASSWDY GOTO user_pass_srror

image2.gif
Branch |

Branch 2

image3.jpeg
| @ Not deployable..
{ @D Deployable...
... with a day's notice

Release to

image4.png
‘Apache Tomcat™

Tomcat 7 Sofousreawnlosds

Wekame e pace o

st st T s n s o e e
QuikNavigaton

12022 e | s
Reesse gy

st gty v ot e st m S vy ks 0 1o 8 Tt s e K5 e ot g oo

Mirors

s sl aher mtr 1 s e in.hre e dochup i i o e i 15
o o ssputesoss - [Gonga]

0m

T ——
[E—

iy

image5.png
id: 20140224-0627

(©) Copyright Eclipse contributors and others 2005, 2014. Al ights reserved.
Visit http://waw.eclipse.org/webtools

FleEe=de %8S

Eo B

image6.png
8 show View

v @ Sever
4k Servers

image7.png

image8.png
Add and Remove... B x

Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

» T ytm.webview

<< Remove All

[V If server is started, publish changes immediately

@ <Back Next > Cancel ‘ ‘ Finish

image9.png
Download sdditional server adapters
Select the server type:
type filter text

B Tomcati32 Semer]
& Tomatvi0 Server
2 Ty g
& Tomcat 5.0 Server
& Tomat 5. Server
& Tomat 160 Server

(B Tometwi0Sewer) 3

Publishes and runs J2EE and Java EE Web projects and server configurations to a local
Tomeat server.

image10.png
(8] New Server
Tomcat Server
| ——
T
Ay Tomes 70
e
‘C:\Users\Milos\Desktop\apache-tomcat-7.0.64 S
P)
e
(Wokench dcout) e
@ P = Concl

image11.png
FE =

type filter text

b & Jave A
b € Java Browsing
b & JoveScript
b € JavaServer Faces
b e PA
b & Maven
b Mylyn
» & Oomph
b € PHP Tools
b € Plug-in Development
b € Remote Systems
4 Server
8 Servers
b & Teom
b & Terminal -

I

~ o JCema)

image12.png
Available Software
Check the items that you wish to install.

Workwith: _ http://download.eclipse.org/releases/mars

type filter text

e

Find more software by working with the ' Availsble Softuware Sites” preferences.

100 Application Development Frameworks
100 Business Intelligence, Reporting and Charting

) Web, XML Java EE and OSGi Enterprise Development

Version

‘Show only the latest versions of available software.
Group items by category.
Show only software applicable to target environment

Contact all update sites during installto find required software

Hide tems that are already installed
What is slready installed?

@

< Back Next>

=

image13.png
[Project Explorer 53 B%|le v=18
4 servers
4 € Tomeat 7.0 Serveratlocalhost-config
catalina policy
catalina properties
3] contextam
8] severami
8] tomeat-usersami
8] webaxml
» 6 ytmadb
» 2 ytmmodel
» 33 ytmawebview

image14.png
File Edit Navigate Search Project Run Window Help

S ER%-0-G- G680 5

mid

IR L=y

12 Prject xplorer 77
4 & Servers

4 £ Tomcat 7.0 Server at localhost-config

v
v
-

b

Done

[2) catalina.policy
[2) catalina properties
8] contectami
8] serveraml
8] tomeat-usersami
8] webaxml

ytmadb

ytmmodel

ytmaebview

O

B%|e

=g

) contectam

L

@ Login 22

hitp://localhost8080/ytmwebview/loginhtmi

A ANGUAGE

smaltsa

Username:

Copyrignt ® Malloc Inc. All Rights Rezerved

= B Console 52

Tomeat v7.0 Server at localhost [Apache Tomeat] C:\Program Files\Java\jrel 8.0_51\binl javaw.exe (24.10.2016.00.49.15)

=0
e B
CONTACT

® X %| B BEE

Quickceess || g | (T
= Out.. 8] Tes. = O

An outline i not available.

ME-m-=0

okt 24, 2016 12:49:36 AM org.apache. coyote.AbstractProtocol start

INFO: Starting ProtocolHandler

‘ajp-bio-3009"

okt 24, 2016 12:49:36 AM org.apache.catalina. startup.Catalina start

INFO: Server startup in 18396 ms

4751 [Thread-1] INFO org.atmosphere. cpr.AtmosphereFramework - Latest version of Atmosphere's Javascript Client 2.3.1
4752 [Thread-1] INFO org.atmosphere. cpr. AtmosphereFramework -

Atmosphere Framework Updates:

Major Update available (new features): 2.4.7
© [http-bio-5080-exec-4] WARN
3 [http-bio-8e8e-exec-4] INFO
localhost:5ese

com.mallocinc.ytm. uebview. beans. ManageUser
com.mallocinc.ytm. webview. beans. ManageUser

- File "build_ts.txt" does not exist.
- Creating manage user

image15.png
1229 <!-- Access log processes all example.
12 Documentation ac: /docs/contig/valve.tnl

120 Note: The pattern used is equivalent to using patters
125 <wslve classtiane

126

127

128

3120 <Context docsas
0 </engines

31 /services

32 </servers

‘org. apache. catalina. valves. AccessLogValve” directory="logs" pattern=

"%h 5L %u ¥t "¥rquot; ¥s %b°

‘ytm.uebvien” patl reloadable="true" source="org.eclipse.jst.jee.server:ytm.webview"/><Con

image16.png

image17.png
@] Open Resource o X

Select an item to open (7 = any character,

any string): -

Matching items: Cache refresh (100%)

[Elaajs ~
&) buttons-carouselj=

[B) commentsFacetuhtml

&) content-maths

[X) contextaml

B courseclassaxhtml

[3) CoursStatsControllerjava

[B) createl essonFacet.html

[3) EntityAdditionaiTimeAssistance ava
[3) EntityLessonProgressjava

0] xportAnswerjavs

3] xportpersonslReportjava

0] ExportQuizDatajova

) gradingahtl

insnermen.oronerties

& ytmwebview/WebContent/resources/js

(@) Show In ¥ Open With ¥ Open Cancel

image18.png
Select pool: Komunikacije - 090

Cut off date: Easy (0-0

[o L T — ediom

-

Question text Difficulty | Frequency factor Last oc

= <o

© Developer Tools - hitp/localhosS999/pages/quiz iz ahtrZcourseld=128itemid=1011

R (| Eements Console Sources

Timeine Profiles Appication Security _Audits
Ldget_newQuiziizard_poolResourcesditorTd_questioncount

v<div i0-"newQuizuizard:3_igt712" class-"ui-panel ui-widget ui-widget-content ui-
corner-all panel_nobg pancl_nopad” style="text-align:center; border:none; " data-
widget="idget_newQuizuizard_j_idt712">
v<div id-"newquiziizard:3_idt712_content” class-"ui-panel-content ui-widget-
content
7 outtonl = nevuiiizero, T e nveuizhizard
SavePoo1RESOUFCEBET™ CTass="ul-DUTEON Ui-wIdget ui-state-default ui-corner-all
ui-button-text-icon-left" onclick-"PrineFaces.ab({s: "newquizkizard:
SavepooLResourceBtn", p:"newQuizuizard: poolResourceEditorId" u: newQuizuizard:
PoolResourceEditorTd newQuiziizard:poolssunanryPanel newquiziizard:
ditorurapper”});return false; " style-'margin:o Spx 1px" type-'submit” rol
button” aria-disabled-"false"> == 50

Save/span>
</button
> cbutton 1d-"nenquizuizard:discardPoolResourcestn” name-"newQuizuizard:

discardpoolResourcestn” class—ui-button ui-widget ui-state-default ui-corner-all
e e e

image19.png
roject Run Window Help

Search Pr

image20.png
Search Project Run Window Help

& Search. CtrleH

B save

B Remote..
— >
e :
B :
o :
= >

Occurrencesinfile Ctrl«Shift+U >

Referring Tests...

image21.png
) search

5 FileSearch 07 Task Search 47 GitSearch 55 Java Search 57 Javascript Search % P

d="savePoolResourceBtn’|] O Case sensitive
[Regular expression

= any string, 7= any character,\ = escape for lterals: 7

(= onysttng. 7= eny v v O Whole word

File name patterns (separated by comma):

- v Choose...

(= any sting, = any character, b= excluding)

Searchin

[Derived resources (] Binary files

Scope

@Workspace O Selected resources O Enclosing projects

O Working set: Choose...

@ [[Comomizes Reploce. | [S ==

image22.png
Microsoft Windows [Version 16.8.14393]
(c) 2616 Microsoft Corporation. All rights reserved

C: \WINDOWS\system32>gem install compass

image23.png
C: \svn\youtestme\trunk\u_source\ytm

bview\WebContent\styles>compass watch

image24.png
Help
@ Welcome

@ Help Contents
@ Search
© Show Contextual Help

| ShowAciveKeybindings.. CurleShitteL
Tips and Triks..

' & Report Bug or Enhancemer
Cheat Sheets...

Perform Setup Tasks... | Open the Eclipse Marketplace

%

% Checkfor Updates
G Instll New Software...
) Installation Details

@ About Ecipse

image25.png
{8} Eclipse Marketplace o X

Eclipse Marketplace
Select solutions to instal. Press Finish to proceed with installation.
Press the informetion button to see a detailed overview and a link to more information.

search vis | instaled] @ Novermbes Nowsete (Scence)

Il Markets | |l Categories v 6o

Transpiler Plugin
Eclpse plugin to automaically transpile your fles (LESS, SASS, CoffeeScript,

Traceur, etc). moreinfo
NGy by Unknown, MIT

less sass scss CoffeeSeriptjade ..

*7 | [A] instells: 0 (0 lest month) Install

Sencha Elipse Plugin 6.0.4

web applicatons using Sencha's framework fstr. Th Eclipse Plugi
ySencha ausibie.. moreinfo

by Sencha, Commercial
sencha ExtJS Sencha Toucl

*3 # | Installs: 3.70K (343 last month) Install

LiClipseText 1.1.0

LiClipseText is an editor which enables Eclipse to be used as a general-purpose.
text editor, providing support for multiple languages out of the box.
LiclipseText moreinfo

by Brainuy Software Ltda, EPL
liclipse Django Dart Meko coffescript

H16 | [A] installs: 222K (5361 lest month)

Marketplaces

@ <o | imatNows | | Fih Cancal

image26.png
] preferences

o
ype fitertot Colors (eRd
Sener! Colorsfor Liclpse Editors in the format:
Cloud Foundry name=r,g,biTALIC,BOLD,UNDERLINE STRIKETHROUGH.
Code Recommenders __dftl_partition_content_type=0,0,0
Data Management Toreground=0,00
Help singlelineComment=63,127,95
Install/Update multiLineComment=63,127,95
Jova bxkg;uumzsszsxzss
JavaE sting=420.255
Java Persistence Bkt 000
Javascript operator=0,00
JSON keyword=127,0,85,80LD
LEss Class=00080LD.
p interface=000
v Liclipse s
Code Completion method=0,0,080LD
Colors. methodDeclaration=0,0,0
Mark Occurrences ‘annotation=100,100,100
o e
g ration=(
inheritedMethod=0,00
Mylyn abstractMethod=00,0
Oomph
Plug-in Development
Remote Systems
Run/Debug D
@ o e

image27.png
&) Preferences

Workspace
v General ~
See Startup and Shutdown' for workspace startup and shutdown preferences.
Appearance PRI =
Capabilities .
Compare/Patch automaticaly
Content Types Refresh using native hooks or po
Editors Refresh on access
Error Reporting [save automtically before buld
opalestien] Aways close unrelated projects without prompt
eys
Netuwork Connectior
Notifications Workspace save interval (in minutes): |5
Perspectives Workspace name (shown in window titiel: | www_source
Search
Securty
envice Policies Workspace path: CAsvnyoutestme\truni\www_source
Startup and Shutdow | [Show workspace path in window title
Tracing
Ul Responsiveness ‘Open referenced projects when a project s opened
e Senie] OAways ONever @ Prompt

Workspace

image28.png
[configrd 52

1require *conpass/inport-once/activate’
2# Require any additional compass plugins here.

3# Set this to the root of your project when deployed:
Z2http_path

6sass_dir

7 fonts_dir = "fonts’
5 images_dir /images”
9 javascripts_dir /resources/js"

16 cache_path /.5855-cache’ g
11 relative_assets = true
12 preferred_syntax = :scss

if environment = :development
line_comments = true
output_style = :expanded

¥ environment — :production
line_comments = false
output_style = :compressed

image29.png
o 1271572016 57PM Fie older
fonts 12/15/2016 332 PM _ File older

imports 12/15/20168:52PM _ File older
Csass 12/15/2016 834 PM _ File older
compass_compile producton.bat 12/15/2016 49 PM Windows Bach Fie e
compass_watch_devbat 12/15/2016 T49PM Windows Bach Fie e
@ configrb 12/15/2016 8:59PM Ruby File K8

image30.png
Overview Kopuchuun Tecrosu ®opy Cratucnka

50 6 6

Members Lessons Tests
Add Members Add Lesson

Course Information

Pass fail or final exam: 50%
Pass fail for progress test: 20%

0: 5012

Name: ‘General Knowledge - Basic

Path: ‘General Knowledge > General Knowledge - Basic

Description: “This course covers general knowledge about General Knowledge - Basic.
Course code:

Course type: Course for taking

Default grading: America

Status: Active

Yourrank: Instructor

image31.png
¥ CAZoran\YTM\Development-trunk\youtestmeldh - Copy (Branch / Tag) - TortoiseSWN [53 |

Repository
From WC] URL:
http:jsvn.malocinc.comfyoutestmeftrunkido

To path: JragsiDE-1.0.65)
Destination L
tsffsvn.mallocin,comiyoutestme/tagsiDE-1.0.65

Log message

Davabase zag:
L. added two new colums in table Questions
2. changed dava type in ANSWER ANSWER_TD

Create copy Inthe repasttry from:
HEAD revison in the repostary.
© Speciic revision n reposory 4230 ShowLog

Working copy.

et explc revision for these externals:
Checki All None

Path URL Fixedat rev

No esternals found

[l Create intermediate folders

S

image32.png
Codeanalyzer.java

Bl class Colsnalyzar inplenents Sevarilawalysis |
privat ioe Hinacout
private int saslinoridn;
private int widestLinanber;
private Lineticthalstogran 1inewidutistogran;
Brivate int toralcharey

e cotemnalyzer() {
okt isthgean - new Livewidthsistogran();
)

public seatic Histcrile> Fiadiavariles(eile parencoirectory) [
Tiateriles files - mee ArayuieEiie)
Findsavaei o (paremtirectory, files);
ceturn Tilesy

)

private static vold findavariles(sile parexpiractory, Listerile> Files) [
Tor (siia file : parentoiractory. Listhiim) |
it [File. gotsane() endsuich(-.javar))
e
atse i {file. ispireccoryl)]
Tiodsavariles|File, Files);
)

)

public void analyserileiFile javarile) throw mxception |
Butforedhoader br - nov Butforedheader (nar Fileheader Javarile));
String Line;
while’(1ine - br.readiinel)]
‘nssaureLnal1)
)

n)

private vold aessureLinelstring line) [
it

iotaiciacs
Tiaoriachaistopran. add ine 1 inesize, linecount);
recorauidestiinellinesize)

)

private vold recoraeidescLinaline linesize) {
iF (linasize > maxtinoriacs) (
‘maxineniac - 1inssizer
hdeetiinasbar - Linecouts
)
)

public int gattinecoun () {
return Tibecout;
)

public int gensaxLiseRiath) (
return nexLiveniathy
Il

image33.png
private SimpleResponse makePageResponse (FitNesseContext context]
throws Bxception
pageTitle = PathParser. render (cravler .getFull2ath (page)
String htal = nakeitm] {context.

SimpleResponse response = new SimpleResponsel();
response. setNaxage (0

response. setContent (ntnl) ;
return response;

image34.png
public class EntityAbsentStudent {
Bigbecimal classId;

EntityStudent entityStudent;
ArrayList<EntityVUserabsence> absences;

public static EntityAbsentStudent createExistingAbsentStudent(BigDecimal userId, Arraylist<EntityVserabsence> absences) {
return new EntityAbsentStudent(userId, absences);
i

private EntityAbsentStudent(BigDecimal userId, Arraylist<EntityVserabsence> absences) {
this.entityStudent = new EntityStudent(VUserAbsenceCast. convertToUser(absences. get(0) .getTo()));
this.absences = absences;

i

public static EntityAbsentStudent createNewabsentStudent(EntityStudent entityStudent) {
return new EntityAbsentStudent(entityStudent);
i

private EntityAbsentStudent(EntityStudent entityStudent) {
this.entityStudent = entityStudent;
this.absences = new ArrayList<>();

image35.png
"TUSERS . USERNAME
/USERS . FIRST_NAME

/USERS . LAST_NAME

/USERS . SEMESTER
/USERS . YEAR_OF_STUDY

| USERS .USER_TYPE

/USERS .USER_STATUS.

/USERS.MATL

1 CLASS .CLASS_ID

1 CLASS .CLASS_CODE.

1 CLASS .CLASS NAME.

1 COURSE . COURSE_ID

1 COURSE . COURSE_NAME.

1 COURSE . COURSE_STATUS.

1 COURSE . COURSE_PATH.

1 COURSE . COURSE_PATH_DISPLAY

/ LESSON_ITEM. ITEM_ID LESSON_ITEM_ID
/ LESSON_ITEM. NAVE LESSON_ITEM NAME
/ LESSON_ITEM. ENABLED LESSON_ITEM_ENABLED
/LESSON. LESSON_ID

/LESSON. LESSON_NAME.

+LESSON. LESSON_STATUS.
/UNIQUE_QUIZ.UNIQUE_QUIZ_ID
/UNIQUE_QUIZ.UNIQUE_QUIZ NAME
+QUIZ_INSTANCE . DURATION
+QUIZ_INSTANCE . ENABLED_FROM
+QUIZ_INSTANCE . ENABLED_TO
+QUIZ_INSTANCE .QUIZ_STARTED
1QUIZ_INSTANCE .QUIZ_FINISHED

1 QUIZ_INSTANCE .QUIZ_INSTANCE_STATUS

1 QUIZ_INSTANCE . ACTIVATION_DATETDME

‘USERNAME?, "EIRST_NAME", "LAST NAME", "SEMESTER", "YEAR OF_STUDY", "USER_TYPE", "USER_STATUS", "EMAIL", "CLASS_ID", "CLASS_CODE", "CLASS NAME", "COU

image36.png
El CREATE OR REPLACE VIEW "V_QUIZ_INSTANCE_RESULT" AS

seLECT

/USERS . FIRST_NAME
/USERS . LAST_NAME

/USERS . SEMESTER
/USERS . YEAR_OF_STUDY

| USERS .USER_TYPE

/USERS .USER_STATUS.

/USERS.MATL

1 CLASS .CLASS_ID

1 CLASS .CLASS_CODE.

1 CLASS .CLASS NAME.

1 COURSE . COURSE_ID

1 COURSE . COURSE_NAME.

1 COURSE . COURSE_STATUS.

1 COURSE . COURSE_PATH.

1 COURSE . COURSE_PATH_DISPLAY

/ LESSON_ITEM. ITEM_ID LESSON_ITEM_ID
/ LESSON_ITEM. NAVE LESSON_ITEM NAME
/ LESSON_ITEM. ENABLED LESSON_ITEM_ENABLED
/LESSON. LESSON_ID

/LESSON. LESSON_NAME.

+LESSON. LESSON_STATUS.
/UNIQUE_QUIZ.UNIQUE_QUIZ_ID
/UNIQUE_QUIZ.UNIQUE_QUIZ NAME

QUIZ INSTANCE.DURATION

image37.jpeg
RELATIONAL

DATABASE

CustomData

DataSample

CustomProvider

BaseProvider

x

EntityLazyApi }<]—i CustomEntity

EntityApi

/

-

ﬁ

SelectEntityLazy|«

Sl
e

WEBVIQ

O

User

image38.png

image39.png

image40.png

image41.png

image42.png
v & ytmdb
> { generated
v s
> i commallocinc ytm.database.casts
> E3 commallocinytm.database properties
> B commallocinc ytm.database propertes functions
> £ commallocinytm.database properties hins

> commallocinc ytm database views.admin
> & METAINF

dbconnections.txt
i Referenced Libraries
i Apache Tomeat v7.0 [Apache Tomcat v7.0]
B\ JRE System Library (rc1 £0_144)

image43.png
£ commallocinc.ytm.database properties
ountries_en.properties
countries_srpropertes
messages_en propertes
messages st properties

states_en properties
statessrproperties
system.properties

image44.png
v ## com.mallocinc.ytm.database.generated.samples.ytm
> [DataCourseSamplejava
> [DataQuinstanceSamplejava
5 [1) DataUserCourseSamplejava

image45.png
public void diaryVerifyMultipleInstances(List<EntityVSchoolClassInstance> instances, String locale) throws MessageException {

Connection conn = null;
try {
conn = Connect .obtainConn(conn) ;
conn. setAutoCommit (false);

for(EntityVSchoolClassInstance instance : instances) {
instance.setDiaryVerified(true);
verifyInstanceImpl(conn, instance, locale);

i

conn.commit();
} catch(MessageException | GDAOException | SQLException e) {
Connect . rethrowExceptionAndTryRolLback(conn, "somethinghentlirong”, e);
} finally {
Connect . returnConn(conn) ;
¥
¥

private void verifyInstanceImpl(Connection conn, EntityVSchoolClassInstance instance, String locale) throws GDAOException, MessageException {
DataSchoolClassInstance dataSchoolClassInstance = new DataSchoolClassInstance();

//setmap

HashMap<Object,Object> setMap = new HashMap<>();

sethap. put(SchoolClassInstanceTo. Columns . DIARY_VERIFIED. toString(), instance.getTo().getDIARY_VERIFIED());

sethap. put(SchoolClassInstanceTo.Columns . DIARY_VERIFY_DATETIME . toString(), TimestampUtility.getCurrentTimestamp());
sethap. put(SchoolClassInstanceTo. Columns . DIARY_VERIFY_USER_ID. toString(), userld);

//parameter
String parameter =

"WHERE "+SchoolClassInstanceTo.Columns . SCHOOL_CLASS_INSTANCE_ID.toString()+" = ?";
dataSchoolClassInstance.updatelithParameters(conn, setMap, parameter, instance.getTo().getSCHOOL_CLASS_INSTANCE_ID());
if(instance.getDiaryVerified()) {

List<VUserAbsenceTo> userAbsences = getAbsencesForInstance(conn, instance);

for(VUserAbsenceTo insertedAbsence : userAbsences) {

handleWarningNotificationForAbsentUser(conn, insertedAbsence, locale);

i

image46.png
public class BaseProvider<Datasample extends DataYtmSample<TransferObject>,
TransferObject extends BaseToClass,
Entity extends EntityApicTransferobject>> {

final static Logger log = Logger.getLogger(BaseProvider.class. getliame()) ;

private Class<DataSample> dataSampleClass;
private ClasscEntity> entityClass;

public Baseprovider(Class<Dstasanples datssampleClass, ClasscEntity> entityClass) {
super();
this. datassmpleclass - datasampleClass;
this.entityClass - entityClass;

i

public void insertEntity(Entity entity) throus MessageException{
Connection conn = null;
Datasanple datasanple = getInstanceofDatasample();
try {

conn = Connect.obtainConn(conn);
datasanple. insertTo(conn, entity.getTo());

} catch (6DAException ¢) {

throw new MessageException(”somethingilentiirong”) ;

1

Finally{
Connect..returnConn(conn) ;

i

image47.png
public class EntityAircraft extends EntityApi<AircraftTo> implements EntitylazyApi {

BaseProvider<DataAircraftsample, AircraftTo, EntityAircraft> aircraftProvider

new BaseProvider<>(DataAircraftsample.class, EntityAircraft.class);

public EntityAircraft(){
) Super(new AircraftTo());

public EntityAircraft(AircraftTo to) {
) super(to);

@override

public void insert() throus MessageException {
aircraftProvider. insertEntity(this);

i

@override

public void update() throus MessageException {
aircraftProvider.updateEntity(this);

i

@override
public void delete() throus MessageException {
// 000 Auto-generated method stub

i

@override
public void refreshRelatedData() throus MessageException {
// 000 Auto-generated method stub

i

@override

public BaseProvider<DataAircraftsample, AircraftTo, EntityAircraft> getProvider() {
return aircraftProvider;

i

@override
public String getRowkey() {

return getTo().getATRCRAFT_ID() . toString();
i

image48.png
package com.mallocinc.ytm.model.entities;

inport java.math.BigDecinal;[]
public class EntitySchoolClassInstance extends EntityApi<schoolClassInstanceTo implements EntityLazyApi{

- BaseProvider<DataschoolClassInstance, SchoolClassInstanceTo, EntitySchoolClassInstance> provider
= new BaseProvider<>(DataschoolClassInstance. class, EntitySchoolClassInstance.class);

Bigbecimal userld;

- public EntitySchoolClassInstance(SchoolClassInstanceTo schoolClassInstance, Bigbecinal userid) {
super();
this.userTd - userid;
setTo(schoolClassInstance);

- | public static BaseProvider<DataschoolClassInstance, SchoolClassInstanceTo, EntitySchoolClassInstance> getProviderTnstance() {
BaseProvider<DataschoolClassInstance, SchoolClassInstanceTo, EntitySchoolClassInstance> provider

= new BaseProvider<>(DataschoolClassInstance. class, EntitySchoolClassInstance.class);

return provider;

image49.png
package com.mallocinc.ytm.model.entities.reports.api;

import com.msllocin.ytm.nodel.entities. api. Entityapis

public abstract class ERSISTIERITEKT> extends EntityApict> {
public EntityReportapi(T o) {

super(to);
7/ 000 Auto-generated constructor stub

image50.png
package com.mallocinc.ytm.model. en ports. interfaces;
public interface EntityReportGroupable {

public String getCompositekey();

image51.png
package com.mallocinc.ytm model.en ports.impl;

import com.mallocinc.ytn. database. generated. to. VQuizResultTos[]
public class EntityReportQuizResult extends EntityReportApicVQuizResultTo> implements EntityReportGroupable{

public EntityReportQuizResult(VQuizResultTo o) {
super (to);|
7771000 Auto-generated constructor stub

i

@override
public String getCompositekey() {

// 000 Auto-generated method stub

return getTo().getQUESTION_ID() . toString();

i

@override
public void insert() throus MessageException {
// T000 Auto-generated method stub

i
@override

public void update() throus MessageException {
// 000 Auto-generated method stub

i

@override

public void delete() throus MessageException {
// 000 Auto-generated method stub

i

@override

public void refreshRelatedData() throus MessageException {
// 000 Auto-generated method stub
i

image52.png
ickage com.mallocinc,
import java.util.List;

public abstract class EntityReportlistApi<T extends EntityReportApi<?> >{
private List<T> reportlist;

public List<T> getReportlist() {
return reportlist;
i

public void setReportlist(List<T> reportlist) {
this.reportList = reportList;
i

image53.png
package com.mallocinc.ytm.model.entities.reports.impl;

mport java.math.Bigdecinal;

public class EntityReportQuizResultGroupBy extends EntityReportlistApi<EntityReportQuizResult> {

- public Map<String, BigDecimal> averageGroupBy() {
Map<string, Bigdecimal> avg e Hashiap<>() 5
Map<string, Bigdecimal> count = new Hashiap<>():

for (EntityReportQuizResult erqr: geEREPORELISE()){

1f(avg. containskey(erqr. getCompositekey())){
avg.get(erqr.getCompositekey()).add(erqr.getTo() . getPOINTS_ASSIGNED());
count.get(erqr.getCompositekey()) . add(BigDecinal . ONE);

b
elsef
avg. put (erqr. getCompositekey(), erqr.getTo() . etPOINTS ASSIGNED());
Count.put(erar-getConpositekey(), Bigdecinal.ONE);
b

ide(count.get(key));

return avg;

i

image54.png
public List<EntityExercise> completeExercises(string str) {
Stringl] splited - str.split("\\s+");

Gdaostatenent strtenew GdaoPagingstatement(Columns. EXERCISE_ NANE. tostring(), @, 10,GdacPagingstatenent.ASC); //creating statement for exercise name colur

stat.leftparen();// putting
boolean First=true;

J/creating where query
for(string query: splited) {
SF(1First)(
stat.or0);
3

Start. teraconst (GdaoTern. LIKE, Columns. EXERCTSE_ID. tostring(), query)
“or()

Cteraconst(GdaoTern. LIKE, Columns.EXERCISE_ NANE. tostring(), query);
First=false;

3
Stat.rigntearen(); //putting

Listcentityxercises results = null;
y
results - provider. selectusingGdaostatenent(stat);//calling a pethod from provider to get records for our Query
3 cateh (essageexception <) {
FacesUtil. throwtessage(s);
b

Systen.out.printin(stat);
retum results;
¥

image55.png
package com.mallocinc.ytm.webview.lazytables.commons;
o import java.util Arraylist;[]

public class SelectEntitylazy<T extends EntityApi<?> & EntitylazyApi > extends LazyDataModel<T> implements SelectableDataModel<T>{
private static final long serialVersionUID = 1792603843647178489L;

private List<T> datasource = new ArrayListo>();
private List<T> selectedItems;

private Arraylist<T> filteredItems;

private String defaultsortField;

private BaseProvider<?, 2, T> provider;

© public Selectentitylazy(String defaultsortricld, BaseProvider<?, 2, T> provider) {
super();
this. defaultsortrield - defaultsortrield;
this.provider - providers

5 @override
public T getRowData(String rowkey) {
For(T entity : datasource){
if(entity.getRowkey(). toString().equals(roukey)) return entity;

1
Feturn null;
i
5 @override

public Object getRowkey(T entity) {
return entity.getRowkey();
i

- public List<T> load(int first, int pagesize, String sortField, SortOrder sortorder, Map<string, Object> filters) {
onvertFilters(filters):
convertsort(sortField);
$#(sorcrield - null)
SortField- defaultsorteield;
i#(sorcorder = null)
SortOrder- Sortorder ASCENDING;
DbULLL dbUES1 = new DBUEL():
ListcTs result = new Arraylist<>();
ry {

result = provider.getEntitiesForPaging(first, pagesize, sortField, dbUtil.translateSortorder(sortorder), filters);
} catch (MessageException e) {
FacesUtil. throwflessage(e);

image56.png
import com.mallocinc.ytn. database. generated. samples.ytm. Datakircraftsample;[]

public class EntityAircraft extends EntityApicAircraftTo> implements Entityazyapi {

BaseProvider<DataAircraftsample, AircraftTo, EntityAircraft> aircraftProvider = new BaseProvider<>(DataAircraftsample.class, EntityAircraft.class);

public Entityaircraft()f
) Super(new AircraftTo());

public EntityAircraft(AircraftTo to) {
) super(to);

@override

public void insert() throus MessageException {
aircraftProvider. insertEntity(this);

i

@override

public void update() throus MessageException {
aircraftProvider.updateEntity(this);

i

@override
public void delete() throus MessageException {
// 000 Auto-generated method stub

i

@override
public void refreshRelatedData() throus MessageException {
// 000 Auto-generated method stub

i

@override

public BaseProvider<DataAircraftsample, AircraftTo, EntityAircraft> getProvider() {
return aircraftProvider;

i

@override
public String getRowkey() {

return getTo().getATRCRAFT_ID() . toString();
i

image57.png
iblic class AircraftController implements Serializable{

private static final long serialVersionUID
inal static Logger Log

private BaseProvider<DataAircraftsample, AircraftTo, EntityAircraft> aircraftsProvider

private SelectEntitylazy<EntityAircraft> allaircrafts

-6913899551116990959L ;
Logger.getLogger(AircraftController. class.gethame());

new BaseProvider<>(DataAircraftsample.class, EntityAircraft.class);

new SelectEntitylazy<>(aircraftsprovider)

private boolean showliewaircraft
private boolean showhircrafts
private boolean editaircraft
private Entityaircraft newtircraft;
Uti1codeTypes ute

private ListcBigbecinal> years
public AtreraftController(){

initvears();
i

private void initvears(){
SimpleDateFormat formatter = new SimpleDateFormat("yyyy")s
int currentvear = Integer.parselnt(formatter. format(new Date()));

For (int year = current¥ear ; year >= 1940; year--) years.add(new BigDecimal(year));

false;
true;

false;

new UtilCodeTypes();

new Arraylisto>();

image58.png
= huiscomposition xmlns="nttp://uuw.n3.0ra/1995/xntal "
ui="http://Sava. sun.con/ sf Facelets”
h"http://Java. sun. con/ 5 ntal "
p-"http://orinefaces.org/ui"
et/ fova. sun. con/Jsf/core™]

<prautocomplete queryoelays"s{exercisetsearch.querybelay}"
minQueryLength="#{exercisetsearch. mingueryLength}"
valle-"s{exercisetsearch. cursearch}” placeholder-"#{nsg. searchusers}"
completeliethods"s{exercisetsearch. conpletefrercises) " effect="blind"
StenLabel-"#{ex. to. EXERCISE_NANE} " Stemvalue="#{ex}"
converter-"exercisesearchconverter™
forceselection="true"
emptyiessage="a(nsg.nodata}” alt="sae” var="ex">

EURGELREEEgauanmpswn,e

192 <pcolumn>
20 <houtputrext

2 values"s{ex. to. EXERCISE_NAYE}" />

2 oLumns

2

2 <prajox event=itenselect”

F Listeners"s{exercisetsearch. parentcontrol Ler. onéxerciseseLect}"
P imedistes"true" />

2

28 prautocompleter

2

0

E

32 «/UHCOROSTEIST>

image59.png
Novi nalet

Kandidat: Pretrazi korisnike
Instruktor: Pretrai korisnike

Veiba: v

Aktivnosti

Satuaj Odustani

image60.png
l‘? youtestme

classroom 2020

