
 Resilience Testing

Page 1 of 13

YouTestMe

Resilience Testing

 Resilience Testing

Page 2 of 13

Table of Contents

1 Introduction .. 3

2 Prerequisites ... 4

3 Testing Tools ... 5

3.1 Performance Testing .. 5

3.1.1 Testing Goal .. 5

3.1.2 Testing Scenarios .. 5

3.1.3 Testing Procedure ... 6

3.1.3.1 Setting Up Testing Environment ... 6

3.1.3.1.1 Loading Users ... 6

3.1.3.1.2 Creating Testing Session ... 6

3.1.3.1.3 Reconfiguring Environment for New Test .. 7

3.1.3.2 Running Test ... 7

3.1.3.2.1 Configuring testing target .. 8

3.1.3.2.2 Setting number of users ... 8

3.1.3.3 Monitoring .. 8

3.1.3.3.1 System monitoring ... 8

3.1.3.3.2 Log Monitoring ... 9

3.1.4 Testing Results .. 10

3.2 Java Resilience Testing ... 11

3.2.1 Testing Procedure ... 11

3.2.1.1 Recommended Test Scenario: .. 11

3.3 DB Analyzer .. 12

3.3.1 Testing Goal .. 12

3.3.2 Testing Procedure ... 12

 Resilience Testing

Page 3 of 13

1 Introduction

Software resilience testing is a software testing method that focuses on ensuring that applications will

perform well in real-life or chaotic conditions.

In other words, it tests an application’s resiliency or ability to withstand stressful or challenging factors.

In this particular case, the resilience testing will include the following tools and testing scenarios:

1. DB Analyzer - a tool for analyzing database servers, database structures, and their data

2. Java resilience testing - simple Java standalone application that generates a heavy load on the

database by performing a resource-consuming operation such as copying large tables or updating

its column with the new set of values

3. JMeter - allows you to simulate the test-taking process in a multi-user environment. The option

“Retake test” can be convenient because it enables a virtual user to take the test over a relatively

long period continuously.

 Resilience Testing

Page 4 of 13

2 Prerequisites

Database performance testing is impossible to do without a relatively large amount of data. For this

purpose, PostgreSQL schema “ytm1_resilience_testing.dmp” was uploaded to the FTP server, and it should

be imported into a target database for testing purposes.

The PostgreSQL 10 schema restore process consists of several commands:

1. Create a target database if it doesn’t exist:

$ psql -h [DATABASE_IP] -U postgres -c ‘create database testdb’;

2. Create database role ytm1 if it doesn’t exist:

$ psql -h [DATABASE_IP] -U postgres -c “create role ytm1 with password

‘2ytm1’;”

3. Restore downloaded database schema in the testdb database:

$ pg_restore -v -h [DATABASE_IP] -U postgres -d testdb

ytm1_resilience_testing.dmp

4. Verify the status of the previous operation by connecting to the restored schema ytm1 and

executing the following commands to retrieve the number of application users:

$ psql -h [DATABASE_IP] -U ytm1 testdb

testdb=# select count(*) from users;

5. Optionally, grant login privilege to role ytm1:

alter user ytm1 with login;

 Resilience Testing

Page 5 of 13

3 Testing Tools

3.1 Performance Testing

3.1.1 Testing Goal

Performance testing shows how much load system can take without malfunctions. It covers usual usage

scenarios that could lead the system to a point when the system is not manageable.

3.1.2 Testing Scenarios

YouTestMe GetCertified is a complex system that may contain a reverse proxy, proctoring server, multiple

application servers, and multiple database servers.

The performance of the system can be limited by many factors as a consequence of that.

Performance testing must be done in many different configurations.

That way, we can find the limits of different system parts and recognize potential bottlenecks.

Some of the scenarios that are tested include:

• Testing on different hardware resources

• Testing with/without Apache reverse proxy/load balancer

• Testing with/without SSL

• Testing on public and private network

• Testing on different physical hardware

JMeter is used as a platform for running tests.

JMeter job is to simulate a high number of users connected to the application and can perform tasks that

users usually do.

Some of the JMeter testing scenarios are:

• Log in, log out

• Log in, start a test, finish a test, log out

• Log in, start a test, answer to N questions, log out

The test is considered successful if all users have passed all stages.

Another thing to consider is the number of JMeter stations.

Due to simulating high load on instances, the number of users can go over JMeter capabilities.

 Resilience Testing

Page 6 of 13

Multiple JMeter instances are used in testing with a high number of users on more advanced tests.

3.1.3 Testing Procedure

Before testing is started, we have to create an appropriate testing environment.

That includes deploying all servers needed for test scenarios, deploying the application version that is being

tested, and configuring the database.

3.1.3.1 Setting Up Testing Environment

3.1.3.1.1 Loading Users

The simplest way to load the desired number of users is by using a prepared excel sheet.

The sheet can be downloaded from the application by going to Users -> Users profiles -> Load users.

The template is linked in the popup window.

After that, it is easy to create any number of users.

Usernames should be configured as numbers, so JMeter could iterate through users, and it is also easier to

follow users progress.

Finally, load users by uploading Excel sheets with users using the same process.

3.1.3.1.2 Creating Testing Session

 Resilience Testing

Page 7 of 13

One of the tests used is “Test_40SNC_Question_UnlimitedTime_Video” which should be loaded into the

application.

In the tab Testing sessions, we create a new session.

After that, assign the desired number of users in the candidate tab.

Users cannot have previous attempts, as tests won't be found by the JMeter script.

3.1.3.1.3 Reconfiguring Environment for New Test

After running tests with JMeter, we want to reuse loaded users.

Resetting attempts could be done through the application, but it is more convenient to reset attempts

directly through the database.

It can be done by executing the “reset_session.sql” script on the application schema.

$psql -h DB_IP_address -U Schema_name -d DB_name -f reset_session.sql

After executing the script, all users are can take the test again, and the JMeter test could run again.

3.1.3.2 Running Test

JMeter test is started on the remote machine in the same or public network.

Before running the test, we have to set some parameters on the JMeter test file.

Configuring tests is done using JMeter GU or by initializing tests with parameters, but tests are started only

using CLI.

After starting JMeter, go to File -> Open and find one of the testing scripts (e.g.

Test_40SNC_Question_UnlimitedTime_Video.jmx).

In the left panel find User Defined Variables.

It will open a table similar to the image below.

 Resilience Testing

Page 8 of 13

3.1.3.2.1 Configuring testing target

Testing target parameters are

• Ip – URL or IP address of the server with the application. In case that we want to connect directly to

the Tomcat server, we can use the IP address of the server or create a host link in the file /etc/hosts

• port – access port of the application. If the application is accessed directly, it is a Tomcat HTTP port.

Port 80 or 443 is used when the application is hosted behind Apache reverse proxy

• instance – context name of the application in the case of the image, JMeter will access the

application using http://test.youtestme.com:8080/ytm1

3.1.3.2.2 Setting number of users

• startingUserId – First user that will be started on the JMeter testing.

• Threads – number of time JMetter will do everything in the script. Every thread starts with a new

user.

3.1.3.3 Monitoring

3.1.3.3.1 System monitoring

System monitoring is done using the program ‘htop’. It is a simple CLI program that presents all necessary

information about the current state of the server.

 Resilience Testing

Page 9 of 13

Important parameters:

• Load – shows the average load on the system in the last 1/5/15 minutes. The value shouldn’t

exceed the number of vCPUs assigned to the server

• CPU utilisation – shows percentage used of total core capacity. Values shouldn’t get in saturation

• Memory utilisation – shows the percentage of memory used on the system. High memory

consumption can force the system to use swap space

• Swap space usage – shows the percentage of swap space occupied. Swap space is used to increase

server memory capacity. It uses space on local storage and is much slower than actual server

memory (RAM). The system shouldn’t start using Swap storage.

3.1.3.3.2 Log Monitoring

Log files can alert on apparent system failures due to bad configuration.

Files that are monitored during testing are:

• Application and Tomcat log file (catalina.out)

• PostgreSQL log file

• Apache error file

 Resilience Testing

Page 10 of 13

3.1.4 Testing Results

 Scenario #1 Scenario #2 Scenario #3

Steps

Test step #1 Log in Log in Log in

Test step #2 Start test Start test Start test

Test step #3 Answer 0 questions Answer 0 questions Answer 5 questions

Test step #4 Submit test Submit test Submit test

Test step #5 Log out Log out Log out

Configuration

Proxy Server ON OFF OFF

Load Balancer ON OFF OFF

SSL ON OFF OFF

Network Public Private Public

JMeter mode Single Distributed (4 x 250) Distributed (4 x 250)

Virtual Cores 4 4 4

Virtual RAM (GB) 16 32 32

Phisical Hardware
8 CPUs x Intel(R) Xeon(R)
CPU E5-1660 v3 @ 3.00GHz

8 CPUs x Intel(R) Xeon(R)
CPU E5-1660 v3 @ 3.00GHz

8 CPUs x Intel(R) Xeon(R) CPU D-1540
@ 2.00GHz -64 GB RAM, HDD Storage

Outcome

Number of Test Attempt 4 2 2

Number of Concurrent Users 800 1000 1000

Number of Logins 800/800 1000/1000 1000/1000

Number of Users Started Test 791/800 1000/1000 1000/1000

Number of Finished Tests 536/800 1000/1000 1000/1000

 Resilience Testing

Page 11 of 13

3.2 Java Resilience Testing

3.2.1 Testing Procedure

To start the Java resilience test, download content of the “java_resilience_testing” directory and:

1. Execute the following command (JDK 8 required):

$ java -jar resilience.jar

2. Enter the required parameters, similar to the example below:

$ java -jar dba.jar jdbc:postgresql://IP:5432/testdb ytm1 2ytm1 100

3. After the proper database parameters were specified and the test is started, ten threads will be

created and run concurrently. Each of them will perform the following operation in each iteration:

a. create a copy of the correspondent table with the highest number of rows

b. delete it

3.2.1.1 Recommended Test Scenario:

1. Take a database server snapshot before resilience testing

2. Start the test by specifying a relatively high number of test iteration (1000, or even more)

3. If the test was completed successfully, compare the system parameters before and after the test

was taken and check if there is no free disk space or if the RAM reached its limit.

This type of test can expose some database misconfiguration or prove that an insufficient amount of

hardware resources (physical or virtual) were allocated to a database server.

 Resilience Testing

Page 12 of 13

3.3 DB Analyzer

3.3.1 Testing Goal

DB Analyzer can be used as a useful tool for database performance testing.

Critical errors in database design and nonoptimized views will cause a significant increase in total runtime,

so DBA can help you to identify them.

3.3.2 Testing Procedure

To start DB Analyzer from the command line, please download the content of “DBAnalyzer” directory, and:

1. Execute the following command (JDK 8 required):

$ java -jar dba.jar

2. Enter the required parameters, similar to the example below:

$ java -jar dba.jar jdbc:postgresql://IP:5432/testdb ytm1 2ytm1 100

3. Wait for the program to complete its analysis

4. Check the produced log files. They will contain many useful information, such as a list of database

objects and their size, redundant objects, detailed table information, etc.

 Resilience Testing

Page 13 of 13

Note: The additional file “gdao.cfg” specifies the advanced functions of DBA, which are not covered in this

document since the configuration is already setup to support in-depth database analysis.

